/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.fitting.leastsquares;

import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem.Evaluation;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.RealVector;

A pedantic implementation of Optimum.
Since:3.3
/** * A pedantic implementation of {@link Optimum}. * * @since 3.3 */
class OptimumImpl implements Optimum {
abscissa and ordinate
/** abscissa and ordinate */
private final Evaluation value;
number of evaluations to compute this optimum
/** number of evaluations to compute this optimum */
private final int evaluations;
number of iterations to compute this optimum
/** number of iterations to compute this optimum */
private final int iterations;
Construct an optimum from an evaluation and the values of the counters.
Params:
  • value – the function value
  • evaluations – number of times the function was evaluated
  • iterations – number of iterations of the algorithm
/** * Construct an optimum from an evaluation and the values of the counters. * * @param value the function value * @param evaluations number of times the function was evaluated * @param iterations number of iterations of the algorithm */
OptimumImpl(final Evaluation value, final int evaluations, final int iterations) { this.value = value; this.evaluations = evaluations; this.iterations = iterations; } /* auto-generated implementations */
{@inheritDoc}
/** {@inheritDoc} */
public int getEvaluations() { return evaluations; }
{@inheritDoc}
/** {@inheritDoc} */
public int getIterations() { return iterations; }
{@inheritDoc}
/** {@inheritDoc} */
public RealMatrix getCovariances(double threshold) { return value.getCovariances(threshold); }
{@inheritDoc}
/** {@inheritDoc} */
public RealVector getSigma(double covarianceSingularityThreshold) { return value.getSigma(covarianceSingularityThreshold); }
{@inheritDoc}
/** {@inheritDoc} */
public double getRMS() { return value.getRMS(); }
{@inheritDoc}
/** {@inheritDoc} */
public RealMatrix getJacobian() { return value.getJacobian(); }
{@inheritDoc}
/** {@inheritDoc} */
public double getCost() { return value.getCost(); }
{@inheritDoc}
/** {@inheritDoc} */
public RealVector getResiduals() { return value.getResiduals(); }
{@inheritDoc}
/** {@inheritDoc} */
public RealVector getPoint() { return value.getPoint(); } }