/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.fitting;

import java.util.ArrayList;
import java.util.List;
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
import org.apache.commons.math3.optim.MaxEval;
import org.apache.commons.math3.optim.InitialGuess;
import org.apache.commons.math3.optim.PointVectorValuePair;
import org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer;
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction;
import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian;
import org.apache.commons.math3.optim.nonlinear.vector.Target;
import org.apache.commons.math3.optim.nonlinear.vector.Weight;

Fitter for parametric univariate real functions y = f(x).
When a univariate real function y = f(x) does depend on some unknown parameters p0, p1 ... pn-1, this class can be used to find these parameters. It does this by fitting the curve so it remains very close to a set of observed points (x0, y0), (x1, y1) ... (xk-1, yk-1). This fitting is done by finding the parameters values that minimizes the objective function ∑(yi-f(xi))2. This is really a least squares problem.
Type parameters:
  • <T> – Function to use for the fit.
Since:2.0
Deprecated:As of 3.3. Please use AbstractCurveFitter and WeightedObservedPoints instead.
/** * Fitter for parametric univariate real functions y = f(x). * <br/> * When a univariate real function y = f(x) does depend on some * unknown parameters p<sub>0</sub>, p<sub>1</sub> ... p<sub>n-1</sub>, * this class can be used to find these parameters. It does this * by <em>fitting</em> the curve so it remains very close to a set of * observed points (x<sub>0</sub>, y<sub>0</sub>), (x<sub>1</sub>, * y<sub>1</sub>) ... (x<sub>k-1</sub>, y<sub>k-1</sub>). This fitting * is done by finding the parameters values that minimizes the objective * function &sum;(y<sub>i</sub>-f(x<sub>i</sub>))<sup>2</sup>. This is * really a least squares problem. * * @param <T> Function to use for the fit. * * @since 2.0 * @deprecated As of 3.3. Please use {@link AbstractCurveFitter} and * {@link WeightedObservedPoints} instead. */
@Deprecated public class CurveFitter<T extends ParametricUnivariateFunction> {
Optimizer to use for the fitting.
/** Optimizer to use for the fitting. */
private final MultivariateVectorOptimizer optimizer;
Observed points.
/** Observed points. */
private final List<WeightedObservedPoint> observations;
Simple constructor.
Params:
  • optimizer – Optimizer to use for the fitting.
Since:3.1
/** * Simple constructor. * * @param optimizer Optimizer to use for the fitting. * @since 3.1 */
public CurveFitter(final MultivariateVectorOptimizer optimizer) { this.optimizer = optimizer; observations = new ArrayList<WeightedObservedPoint>(); }
Add an observed (x,y) point to the sample with unit weight.

Calling this method is equivalent to call addObservedPoint(1.0, x, y).

Params:
  • x – abscissa of the point
  • y – observed value of the point at x, after fitting we should have f(x) as close as possible to this value
See Also:
/** Add an observed (x,y) point to the sample with unit weight. * <p>Calling this method is equivalent to call * {@code addObservedPoint(1.0, x, y)}.</p> * @param x abscissa of the point * @param y observed value of the point at x, after fitting we should * have f(x) as close as possible to this value * @see #addObservedPoint(double, double, double) * @see #addObservedPoint(WeightedObservedPoint) * @see #getObservations() */
public void addObservedPoint(double x, double y) { addObservedPoint(1.0, x, y); }
Add an observed weighted (x,y) point to the sample.
Params:
  • weight – weight of the observed point in the fit
  • x – abscissa of the point
  • y – observed value of the point at x, after fitting we should have f(x) as close as possible to this value
See Also:
/** Add an observed weighted (x,y) point to the sample. * @param weight weight of the observed point in the fit * @param x abscissa of the point * @param y observed value of the point at x, after fitting we should * have f(x) as close as possible to this value * @see #addObservedPoint(double, double) * @see #addObservedPoint(WeightedObservedPoint) * @see #getObservations() */
public void addObservedPoint(double weight, double x, double y) { observations.add(new WeightedObservedPoint(weight, x, y)); }
Add an observed weighted (x,y) point to the sample.
Params:
  • observed – observed point to add
See Also:
/** Add an observed weighted (x,y) point to the sample. * @param observed observed point to add * @see #addObservedPoint(double, double) * @see #addObservedPoint(double, double, double) * @see #getObservations() */
public void addObservedPoint(WeightedObservedPoint observed) { observations.add(observed); }
Get the observed points.
See Also:
Returns:observed points
/** Get the observed points. * @return observed points * @see #addObservedPoint(double, double) * @see #addObservedPoint(double, double, double) * @see #addObservedPoint(WeightedObservedPoint) */
public WeightedObservedPoint[] getObservations() { return observations.toArray(new WeightedObservedPoint[observations.size()]); }
Remove all observations.
/** * Remove all observations. */
public void clearObservations() { observations.clear(); }
Fit a curve. This method compute the coefficients of the curve that best fit the sample of observed points previously given through calls to the addObservedPoint method.
Params:
  • f – parametric function to fit.
  • initialGuess – first guess of the function parameters.
Throws:
Returns:the fitted parameters.
/** * Fit a curve. * This method compute the coefficients of the curve that best * fit the sample of observed points previously given through calls * to the {@link #addObservedPoint(WeightedObservedPoint) * addObservedPoint} method. * * @param f parametric function to fit. * @param initialGuess first guess of the function parameters. * @return the fitted parameters. * @throws org.apache.commons.math3.exception.DimensionMismatchException * if the start point dimension is wrong. */
public double[] fit(T f, final double[] initialGuess) { return fit(Integer.MAX_VALUE, f, initialGuess); }
Fit a curve. This method compute the coefficients of the curve that best fit the sample of observed points previously given through calls to the addObservedPoint method.
Params:
  • f – parametric function to fit.
  • initialGuess – first guess of the function parameters.
  • maxEval – Maximum number of function evaluations.
Throws:
Returns:the fitted parameters.
Since:3.0
/** * Fit a curve. * This method compute the coefficients of the curve that best * fit the sample of observed points previously given through calls * to the {@link #addObservedPoint(WeightedObservedPoint) * addObservedPoint} method. * * @param f parametric function to fit. * @param initialGuess first guess of the function parameters. * @param maxEval Maximum number of function evaluations. * @return the fitted parameters. * @throws org.apache.commons.math3.exception.TooManyEvaluationsException * if the number of allowed evaluations is exceeded. * @throws org.apache.commons.math3.exception.DimensionMismatchException * if the start point dimension is wrong. * @since 3.0 */
public double[] fit(int maxEval, T f, final double[] initialGuess) { // Prepare least squares problem. double[] target = new double[observations.size()]; double[] weights = new double[observations.size()]; int i = 0; for (WeightedObservedPoint point : observations) { target[i] = point.getY(); weights[i] = point.getWeight(); ++i; } // Input to the optimizer: the model and its Jacobian. final TheoreticalValuesFunction model = new TheoreticalValuesFunction(f); // Perform the fit. final PointVectorValuePair optimum = optimizer.optimize(new MaxEval(maxEval), model.getModelFunction(), model.getModelFunctionJacobian(), new Target(target), new Weight(weights), new InitialGuess(initialGuess)); // Extract the coefficients. return optimum.getPointRef(); }
Vectorial function computing function theoretical values.
/** Vectorial function computing function theoretical values. */
private class TheoreticalValuesFunction {
Function to fit.
/** Function to fit. */
private final ParametricUnivariateFunction f;
Params:
  • f – function to fit.
/** * @param f function to fit. */
TheoreticalValuesFunction(final ParametricUnivariateFunction f) { this.f = f; }
Returns:the model function values.
/** * @return the model function values. */
public ModelFunction getModelFunction() { return new ModelFunction(new MultivariateVectorFunction() {
{@inheritDoc}
/** {@inheritDoc} */
public double[] value(double[] point) { // compute the residuals final double[] values = new double[observations.size()]; int i = 0; for (WeightedObservedPoint observed : observations) { values[i++] = f.value(observed.getX(), point); } return values; } }); }
Returns:the model function Jacobian.
/** * @return the model function Jacobian. */
public ModelFunctionJacobian getModelFunctionJacobian() { return new ModelFunctionJacobian(new MultivariateMatrixFunction() {
{@inheritDoc}
/** {@inheritDoc} */
public double[][] value(double[] point) { final double[][] jacobian = new double[observations.size()][]; int i = 0; for (WeightedObservedPoint observed : observations) { jacobian[i++] = f.gradient(observed.getX(), point); } return jacobian; } }); } } }