/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.distribution.fitting;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.apache.commons.math3.distribution.MultivariateNormalDistribution;
import org.apache.commons.math3.distribution.MixtureMultivariateNormalDistribution;
import org.apache.commons.math3.exception.ConvergenceException;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.SingularMatrixException;
import org.apache.commons.math3.stat.correlation.Covariance;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.Pair;
Expectation-Maximization algorithm for fitting the parameters of
multivariate normal mixture model distributions.
This implementation is pure original code based on
EM Demystified: An Expectation-Maximization Tutorial by Yihua Chen and Maya R. Gupta,
Department of Electrical Engineering, University of Washington, Seattle, WA 98195.
It was verified using external tools like CRAN Mixtools
(see the JUnit test cases) but it is not based on Mixtools code at all.
The discussion of the origin of this class can be seen in the comments of the MATH-817 JIRA issue.
Since: 3.2
/**
* Expectation-Maximization</a> algorithm for fitting the parameters of
* multivariate normal mixture model distributions.
*
* This implementation is pure original code based on <a
* href="https://www.ee.washington.edu/techsite/papers/documents/UWEETR-2010-0002.pdf">
* EM Demystified: An Expectation-Maximization Tutorial</a> by Yihua Chen and Maya R. Gupta,
* Department of Electrical Engineering, University of Washington, Seattle, WA 98195.
* It was verified using external tools like <a
* href="http://cran.r-project.org/web/packages/mixtools/index.html">CRAN Mixtools</a>
* (see the JUnit test cases) but it is <strong>not</strong> based on Mixtools code at all.
* The discussion of the origin of this class can be seen in the comments of the <a
* href="https://issues.apache.org/jira/browse/MATH-817">MATH-817</a> JIRA issue.
* @since 3.2
*/
public class MultivariateNormalMixtureExpectationMaximization {
Default maximum number of iterations allowed per fitting process.
/**
* Default maximum number of iterations allowed per fitting process.
*/
private static final int DEFAULT_MAX_ITERATIONS = 1000;
Default convergence threshold for fitting.
/**
* Default convergence threshold for fitting.
*/
private static final double DEFAULT_THRESHOLD = 1E-5;
The data to fit.
/**
* The data to fit.
*/
private final double[][] data;
The model fit against the data.
/**
* The model fit against the data.
*/
private MixtureMultivariateNormalDistribution fittedModel;
The log likelihood of the data given the fitted model.
/**
* The log likelihood of the data given the fitted model.
*/
private double logLikelihood = 0d;
Creates an object to fit a multivariate normal mixture model to data.
Params: - data – Data to use in fitting procedure
Throws: - NotStrictlyPositiveException – if data has no rows
- DimensionMismatchException – if rows of data have different numbers
of columns
- NumberIsTooSmallException – if the number of columns in the data is
less than 2
/**
* Creates an object to fit a multivariate normal mixture model to data.
*
* @param data Data to use in fitting procedure
* @throws NotStrictlyPositiveException if data has no rows
* @throws DimensionMismatchException if rows of data have different numbers
* of columns
* @throws NumberIsTooSmallException if the number of columns in the data is
* less than 2
*/
public MultivariateNormalMixtureExpectationMaximization(double[][] data)
throws NotStrictlyPositiveException,
DimensionMismatchException,
NumberIsTooSmallException {
if (data.length < 1) {
throw new NotStrictlyPositiveException(data.length);
}
this.data = new double[data.length][data[0].length];
for (int i = 0; i < data.length; i++) {
if (data[i].length != data[0].length) {
// Jagged arrays not allowed
throw new DimensionMismatchException(data[i].length,
data[0].length);
}
if (data[i].length < 2) {
throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_TOO_SMALL,
data[i].length, 2, true);
}
this.data[i] = MathArrays.copyOf(data[i], data[i].length);
}
}
Fit a mixture model to the data supplied to the constructor.
The quality of the fit depends on the concavity of the data provided to
the constructor and the initial mixture provided to this function. If the
data has many local optima, multiple runs of the fitting function with
different initial mixtures may be required to find the optimal solution.
If a SingularMatrixException is encountered, it is possible that another
initialization would work.
Params: - initialMixture – Model containing initial values of weights and
multivariate normals
- maxIterations – Maximum iterations allowed for fit
- threshold – Convergence threshold computed as difference in
logLikelihoods between successive iterations
Throws: - SingularMatrixException – if any component's covariance matrix is
singular during fitting
- NotStrictlyPositiveException – if numComponents is less than one
or threshold is less than Double.MIN_VALUE
- DimensionMismatchException – if initialMixture mean vector and data
number of columns are not equal
/**
* Fit a mixture model to the data supplied to the constructor.
*
* The quality of the fit depends on the concavity of the data provided to
* the constructor and the initial mixture provided to this function. If the
* data has many local optima, multiple runs of the fitting function with
* different initial mixtures may be required to find the optimal solution.
* If a SingularMatrixException is encountered, it is possible that another
* initialization would work.
*
* @param initialMixture Model containing initial values of weights and
* multivariate normals
* @param maxIterations Maximum iterations allowed for fit
* @param threshold Convergence threshold computed as difference in
* logLikelihoods between successive iterations
* @throws SingularMatrixException if any component's covariance matrix is
* singular during fitting
* @throws NotStrictlyPositiveException if numComponents is less than one
* or threshold is less than Double.MIN_VALUE
* @throws DimensionMismatchException if initialMixture mean vector and data
* number of columns are not equal
*/
public void fit(final MixtureMultivariateNormalDistribution initialMixture,
final int maxIterations,
final double threshold)
throws SingularMatrixException,
NotStrictlyPositiveException,
DimensionMismatchException {
if (maxIterations < 1) {
throw new NotStrictlyPositiveException(maxIterations);
}
if (threshold < Double.MIN_VALUE) {
throw new NotStrictlyPositiveException(threshold);
}
final int n = data.length;
// Number of data columns. Jagged data already rejected in constructor,
// so we can assume the lengths of each row are equal.
final int numCols = data[0].length;
final int k = initialMixture.getComponents().size();
final int numMeanColumns
= initialMixture.getComponents().get(0).getSecond().getMeans().length;
if (numMeanColumns != numCols) {
throw new DimensionMismatchException(numMeanColumns, numCols);
}
int numIterations = 0;
double previousLogLikelihood = 0d;
logLikelihood = Double.NEGATIVE_INFINITY;
// Initialize model to fit to initial mixture.
fittedModel = new MixtureMultivariateNormalDistribution(initialMixture.getComponents());
while (numIterations++ <= maxIterations &&
FastMath.abs(previousLogLikelihood - logLikelihood) > threshold) {
previousLogLikelihood = logLikelihood;
double sumLogLikelihood = 0d;
// Mixture components
final List<Pair<Double, MultivariateNormalDistribution>> components
= fittedModel.getComponents();
// Weight and distribution of each component
final double[] weights = new double[k];
final MultivariateNormalDistribution[] mvns = new MultivariateNormalDistribution[k];
for (int j = 0; j < k; j++) {
weights[j] = components.get(j).getFirst();
mvns[j] = components.get(j).getSecond();
}
// E-step: compute the data dependent parameters of the expectation
// function.
// The percentage of row's total density between a row and a
// component
final double[][] gamma = new double[n][k];
// Sum of gamma for each component
final double[] gammaSums = new double[k];
// Sum of gamma times its row for each each component
final double[][] gammaDataProdSums = new double[k][numCols];
for (int i = 0; i < n; i++) {
final double rowDensity = fittedModel.density(data[i]);
sumLogLikelihood += FastMath.log(rowDensity);
for (int j = 0; j < k; j++) {
gamma[i][j] = weights[j] * mvns[j].density(data[i]) / rowDensity;
gammaSums[j] += gamma[i][j];
for (int col = 0; col < numCols; col++) {
gammaDataProdSums[j][col] += gamma[i][j] * data[i][col];
}
}
}
logLikelihood = sumLogLikelihood / n;
// M-step: compute the new parameters based on the expectation
// function.
final double[] newWeights = new double[k];
final double[][] newMeans = new double[k][numCols];
for (int j = 0; j < k; j++) {
newWeights[j] = gammaSums[j] / n;
for (int col = 0; col < numCols; col++) {
newMeans[j][col] = gammaDataProdSums[j][col] / gammaSums[j];
}
}
// Compute new covariance matrices
final RealMatrix[] newCovMats = new RealMatrix[k];
for (int j = 0; j < k; j++) {
newCovMats[j] = new Array2DRowRealMatrix(numCols, numCols);
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < k; j++) {
final RealMatrix vec
= new Array2DRowRealMatrix(MathArrays.ebeSubtract(data[i], newMeans[j]));
final RealMatrix dataCov
= vec.multiply(vec.transpose()).scalarMultiply(gamma[i][j]);
newCovMats[j] = newCovMats[j].add(dataCov);
}
}
// Converting to arrays for use by fitted model
final double[][][] newCovMatArrays = new double[k][numCols][numCols];
for (int j = 0; j < k; j++) {
newCovMats[j] = newCovMats[j].scalarMultiply(1d / gammaSums[j]);
newCovMatArrays[j] = newCovMats[j].getData();
}
// Update current model
fittedModel = new MixtureMultivariateNormalDistribution(newWeights,
newMeans,
newCovMatArrays);
}
if (FastMath.abs(previousLogLikelihood - logLikelihood) > threshold) {
// Did not converge before the maximum number of iterations
throw new ConvergenceException();
}
}
Fit a mixture model to the data supplied to the constructor.
The quality of the fit depends on the concavity of the data provided to
the constructor and the initial mixture provided to this function. If the
data has many local optima, multiple runs of the fitting function with
different initial mixtures may be required to find the optimal solution.
If a SingularMatrixException is encountered, it is possible that another
initialization would work.
Params: - initialMixture – Model containing initial values of weights and
multivariate normals
Throws: - SingularMatrixException – if any component's covariance matrix is
singular during fitting
- NotStrictlyPositiveException – if numComponents is less than one or
threshold is less than Double.MIN_VALUE
/**
* Fit a mixture model to the data supplied to the constructor.
*
* The quality of the fit depends on the concavity of the data provided to
* the constructor and the initial mixture provided to this function. If the
* data has many local optima, multiple runs of the fitting function with
* different initial mixtures may be required to find the optimal solution.
* If a SingularMatrixException is encountered, it is possible that another
* initialization would work.
*
* @param initialMixture Model containing initial values of weights and
* multivariate normals
* @throws SingularMatrixException if any component's covariance matrix is
* singular during fitting
* @throws NotStrictlyPositiveException if numComponents is less than one or
* threshold is less than Double.MIN_VALUE
*/
public void fit(MixtureMultivariateNormalDistribution initialMixture)
throws SingularMatrixException,
NotStrictlyPositiveException {
fit(initialMixture, DEFAULT_MAX_ITERATIONS, DEFAULT_THRESHOLD);
}
Helper method to create a multivariate normal mixture model which can be used to initialize fit(MixtureMultivariateNormalDistribution)
. This method uses the data supplied to the constructor to try to determine a good mixture model at which to start the fit, but it is not guaranteed to supply a model which will find the optimal solution or even converge. Params: - data – Data to estimate distribution
- numComponents – Number of components for estimated mixture
Throws: - NumberIsTooLargeException – if
numComponents
is greater than the number of data rows. - NumberIsTooSmallException – if
numComponents < 2
. - NotStrictlyPositiveException – if data has less than 2 rows
- DimensionMismatchException – if rows of data have different numbers
of columns
Returns: Multivariate normal mixture model estimated from the data
/**
* Helper method to create a multivariate normal mixture model which can be
* used to initialize {@link #fit(MixtureMultivariateNormalDistribution)}.
*
* This method uses the data supplied to the constructor to try to determine
* a good mixture model at which to start the fit, but it is not guaranteed
* to supply a model which will find the optimal solution or even converge.
*
* @param data Data to estimate distribution
* @param numComponents Number of components for estimated mixture
* @return Multivariate normal mixture model estimated from the data
* @throws NumberIsTooLargeException if {@code numComponents} is greater
* than the number of data rows.
* @throws NumberIsTooSmallException if {@code numComponents < 2}.
* @throws NotStrictlyPositiveException if data has less than 2 rows
* @throws DimensionMismatchException if rows of data have different numbers
* of columns
*/
public static MixtureMultivariateNormalDistribution estimate(final double[][] data,
final int numComponents)
throws NotStrictlyPositiveException,
DimensionMismatchException {
if (data.length < 2) {
throw new NotStrictlyPositiveException(data.length);
}
if (numComponents < 2) {
throw new NumberIsTooSmallException(numComponents, 2, true);
}
if (numComponents > data.length) {
throw new NumberIsTooLargeException(numComponents, data.length, true);
}
final int numRows = data.length;
final int numCols = data[0].length;
// sort the data
final DataRow[] sortedData = new DataRow[numRows];
for (int i = 0; i < numRows; i++) {
sortedData[i] = new DataRow(data[i]);
}
Arrays.sort(sortedData);
// uniform weight for each bin
final double weight = 1d / numComponents;
// components of mixture model to be created
final List<Pair<Double, MultivariateNormalDistribution>> components =
new ArrayList<Pair<Double, MultivariateNormalDistribution>>(numComponents);
// create a component based on data in each bin
for (int binIndex = 0; binIndex < numComponents; binIndex++) {
// minimum index (inclusive) from sorted data for this bin
final int minIndex = (binIndex * numRows) / numComponents;
// maximum index (exclusive) from sorted data for this bin
final int maxIndex = ((binIndex + 1) * numRows) / numComponents;
// number of data records that will be in this bin
final int numBinRows = maxIndex - minIndex;
// data for this bin
final double[][] binData = new double[numBinRows][numCols];
// mean of each column for the data in the this bin
final double[] columnMeans = new double[numCols];
// populate bin and create component
for (int i = minIndex, iBin = 0; i < maxIndex; i++, iBin++) {
for (int j = 0; j < numCols; j++) {
final double val = sortedData[i].getRow()[j];
columnMeans[j] += val;
binData[iBin][j] = val;
}
}
MathArrays.scaleInPlace(1d / numBinRows, columnMeans);
// covariance matrix for this bin
final double[][] covMat
= new Covariance(binData).getCovarianceMatrix().getData();
final MultivariateNormalDistribution mvn
= new MultivariateNormalDistribution(columnMeans, covMat);
components.add(new Pair<Double, MultivariateNormalDistribution>(weight, mvn));
}
return new MixtureMultivariateNormalDistribution(components);
}
Gets the log likelihood of the data under the fitted model.
Returns: Log likelihood of data or zero of no data has been fit
/**
* Gets the log likelihood of the data under the fitted model.
*
* @return Log likelihood of data or zero of no data has been fit
*/
public double getLogLikelihood() {
return logLikelihood;
}
Gets the fitted model.
Returns: fitted model or null
if no fit has been performed yet.
/**
* Gets the fitted model.
*
* @return fitted model or {@code null} if no fit has been performed yet.
*/
public MixtureMultivariateNormalDistribution getFittedModel() {
return new MixtureMultivariateNormalDistribution(fittedModel.getComponents());
}
Class used for sorting user-supplied data.
/**
* Class used for sorting user-supplied data.
*/
private static class DataRow implements Comparable<DataRow> {
One data row. /** One data row. */
private final double[] row;
Mean of the data row. /** Mean of the data row. */
private Double mean;
Create a data row.
Params: - data – Data to use for the row
/**
* Create a data row.
* @param data Data to use for the row
*/
DataRow(final double[] data) {
// Store reference.
row = data;
// Compute mean.
mean = 0d;
for (int i = 0; i < data.length; i++) {
mean += data[i];
}
mean /= data.length;
}
Compare two data rows.
Params: - other – The other row
Returns: int for sorting
/**
* Compare two data rows.
* @param other The other row
* @return int for sorting
*/
public int compareTo(final DataRow other) {
return mean.compareTo(other.mean);
}
{@inheritDoc} /** {@inheritDoc} */
@Override
public boolean equals(Object other) {
if (this == other) {
return true;
}
if (other instanceof DataRow) {
return MathArrays.equals(row, ((DataRow) other).row);
}
return false;
}
{@inheritDoc} /** {@inheritDoc} */
@Override
public int hashCode() {
return Arrays.hashCode(row);
}
Get a data row.
Returns: data row array
/**
* Get a data row.
* @return data row array
*/
public double[] getRow() {
return row;
}
}
}