/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.EigenDecomposition;
import org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.SingularMatrixException;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;

Implementation of the multivariate normal (Gaussian) distribution.
See Also:
Since:3.1
/** * Implementation of the multivariate normal (Gaussian) distribution. * * @see <a href="http://en.wikipedia.org/wiki/Multivariate_normal_distribution"> * Multivariate normal distribution (Wikipedia)</a> * @see <a href="http://mathworld.wolfram.com/MultivariateNormalDistribution.html"> * Multivariate normal distribution (MathWorld)</a> * * @since 3.1 */
public class MultivariateNormalDistribution extends AbstractMultivariateRealDistribution {
Vector of means.
/** Vector of means. */
private final double[] means;
Covariance matrix.
/** Covariance matrix. */
private final RealMatrix covarianceMatrix;
The matrix inverse of the covariance matrix.
/** The matrix inverse of the covariance matrix. */
private final RealMatrix covarianceMatrixInverse;
The determinant of the covariance matrix.
/** The determinant of the covariance matrix. */
private final double covarianceMatrixDeterminant;
Matrix used in computation of samples.
/** Matrix used in computation of samples. */
private final RealMatrix samplingMatrix;
Creates a multivariate normal distribution with the given mean vector and covariance matrix.
The number of dimensions is equal to the length of the mean vector and to the number of rows and columns of the covariance matrix. It is frequently written as "p" in formulae.

Note: this constructor will implicitly create an instance of Well19937c as random generator to be used for sampling only (see sample() and AbstractMultivariateRealDistribution.sample(int)). In case no sampling is needed for the created distribution, it is advised to pass null as random generator via the appropriate constructors to avoid the additional initialisation overhead.

Params:
  • means – Vector of means.
  • covariances – Covariance matrix.
Throws:
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * <p> * <b>Note:</b> this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */
public MultivariateNormalDistribution(final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { this(new Well19937c(), means, covariances); }
Creates a multivariate normal distribution with the given mean vector and covariance matrix.
The number of dimensions is equal to the length of the mean vector and to the number of rows and columns of the covariance matrix. It is frequently written as "p" in formulae.
Params:
  • rng – Random Number Generator.
  • means – Vector of means.
  • covariances – Covariance matrix.
Throws:
/** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. * <br/> * The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param rng Random Number Generator. * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */
public MultivariateNormalDistribution(RandomGenerator rng, final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { super(rng, means.length); final int dim = means.length; if (covariances.length != dim) { throw new DimensionMismatchException(covariances.length, dim); } for (int i = 0; i < dim; i++) { if (dim != covariances[i].length) { throw new DimensionMismatchException(covariances[i].length, dim); } } this.means = MathArrays.copyOf(means); covarianceMatrix = new Array2DRowRealMatrix(covariances); // Covariance matrix eigen decomposition. final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix); // Compute and store the inverse. covarianceMatrixInverse = covMatDec.getSolver().getInverse(); // Compute and store the determinant. covarianceMatrixDeterminant = covMatDec.getDeterminant(); // Eigenvalues of the covariance matrix. final double[] covMatEigenvalues = covMatDec.getRealEigenvalues(); for (int i = 0; i < covMatEigenvalues.length; i++) { if (covMatEigenvalues[i] < 0) { throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0); } } // Matrix where each column is an eigenvector of the covariance matrix. final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim); for (int v = 0; v < dim; v++) { final double[] evec = covMatDec.getEigenvector(v).toArray(); covMatEigenvectors.setColumn(v, evec); } final RealMatrix tmpMatrix = covMatEigenvectors.transpose(); // Scale each eigenvector by the square root of its eigenvalue. for (int row = 0; row < dim; row++) { final double factor = FastMath.sqrt(covMatEigenvalues[row]); for (int col = 0; col < dim; col++) { tmpMatrix.multiplyEntry(row, col, factor); } } samplingMatrix = covMatEigenvectors.multiply(tmpMatrix); }
Gets the mean vector.
Returns:the mean vector.
/** * Gets the mean vector. * * @return the mean vector. */
public double[] getMeans() { return MathArrays.copyOf(means); }
Gets the covariance matrix.
Returns:the covariance matrix.
/** * Gets the covariance matrix. * * @return the covariance matrix. */
public RealMatrix getCovariances() { return covarianceMatrix.copy(); }
{@inheritDoc}
/** {@inheritDoc} */
public double density(final double[] vals) throws DimensionMismatchException { final int dim = getDimension(); if (vals.length != dim) { throw new DimensionMismatchException(vals.length, dim); } return FastMath.pow(2 * FastMath.PI, -0.5 * dim) * FastMath.pow(covarianceMatrixDeterminant, -0.5) * getExponentTerm(vals); }
Gets the square root of each element on the diagonal of the covariance matrix.
Returns:the standard deviations.
/** * Gets the square root of each element on the diagonal of the covariance * matrix. * * @return the standard deviations. */
public double[] getStandardDeviations() { final int dim = getDimension(); final double[] std = new double[dim]; final double[][] s = covarianceMatrix.getData(); for (int i = 0; i < dim; i++) { std[i] = FastMath.sqrt(s[i][i]); } return std; }
{@inheritDoc}
/** {@inheritDoc} */
@Override public double[] sample() { final int dim = getDimension(); final double[] normalVals = new double[dim]; for (int i = 0; i < dim; i++) { normalVals[i] = random.nextGaussian(); } final double[] vals = samplingMatrix.operate(normalVals); for (int i = 0; i < dim; i++) { vals[i] += means[i]; } return vals; }
Computes the term used in the exponent (see definition of the distribution).
Params:
  • values – Values at which to compute density.
Returns:the multiplication factor of density calculations.
/** * Computes the term used in the exponent (see definition of the distribution). * * @param values Values at which to compute density. * @return the multiplication factor of density calculations. */
private double getExponentTerm(final double[] values) { final double[] centered = new double[values.length]; for (int i = 0; i < centered.length; i++) { centered[i] = values[i] - getMeans()[i]; } final double[] preMultiplied = covarianceMatrixInverse.preMultiply(centered); double sum = 0; for (int i = 0; i < preMultiplied.length; i++) { sum += preMultiplied[i] * centered[i]; } return FastMath.exp(-0.5 * sum); } }