/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.distribution;
import java.io.Serializable;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.util.FastMath;
Base class for integer-valued discrete distributions. Default
implementations are provided for some of the methods that do not vary
from distribution to distribution.
/**
* Base class for integer-valued discrete distributions. Default
* implementations are provided for some of the methods that do not vary
* from distribution to distribution.
*
*/
public abstract class AbstractIntegerDistribution implements IntegerDistribution, Serializable {
Serializable version identifier /** Serializable version identifier */
private static final long serialVersionUID = -1146319659338487221L;
RandomData instance used to generate samples from the distribution.
Deprecated: As of 3.1, to be removed in 4.0. Please use the random
instance variable instead.
/**
* RandomData instance used to generate samples from the distribution.
* @deprecated As of 3.1, to be removed in 4.0. Please use the
* {@link #random} instance variable instead.
*/
@Deprecated
protected final org.apache.commons.math3.random.RandomDataImpl randomData =
new org.apache.commons.math3.random.RandomDataImpl();
RNG instance used to generate samples from the distribution.
Since: 3.1
/**
* RNG instance used to generate samples from the distribution.
* @since 3.1
*/
protected final RandomGenerator random;
Deprecated: As of 3.1, to be removed in 4.0. Please use AbstractIntegerDistribution(RandomGenerator)
instead.
/**
* @deprecated As of 3.1, to be removed in 4.0. Please use
* {@link #AbstractIntegerDistribution(RandomGenerator)} instead.
*/
@Deprecated
protected AbstractIntegerDistribution() {
// Legacy users are only allowed to access the deprecated "randomData".
// New users are forbidden to use this constructor.
random = null;
}
Params: - rng – Random number generator.
Since: 3.1
/**
* @param rng Random number generator.
* @since 3.1
*/
protected AbstractIntegerDistribution(RandomGenerator rng) {
random = rng;
}
{@inheritDoc}
The default implementation uses the identity
P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)
/**
* {@inheritDoc}
*
* The default implementation uses the identity
* <p>{@code P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)}</p>
*/
public double cumulativeProbability(int x0, int x1) throws NumberIsTooLargeException {
if (x1 < x0) {
throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT,
x0, x1, true);
}
return cumulativeProbability(x1) - cumulativeProbability(x0);
}
{@inheritDoc}
The default implementation returns
IntegerDistribution.getSupportLowerBound()
for p = 0
,
IntegerDistribution.getSupportUpperBound()
for p = 1
, and
solveInverseCumulativeProbability(double, int, int)
for 0 < p < 1
.
/**
* {@inheritDoc}
*
* The default implementation returns
* <ul>
* <li>{@link #getSupportLowerBound()} for {@code p = 0},</li>
* <li>{@link #getSupportUpperBound()} for {@code p = 1}, and</li>
* <li>{@link #solveInverseCumulativeProbability(double, int, int)} for
* {@code 0 < p < 1}.</li>
* </ul>
*/
public int inverseCumulativeProbability(final double p) throws OutOfRangeException {
if (p < 0.0 || p > 1.0) {
throw new OutOfRangeException(p, 0, 1);
}
int lower = getSupportLowerBound();
if (p == 0.0) {
return lower;
}
if (lower == Integer.MIN_VALUE) {
if (checkedCumulativeProbability(lower) >= p) {
return lower;
}
} else {
lower -= 1; // this ensures cumulativeProbability(lower) < p, which
// is important for the solving step
}
int upper = getSupportUpperBound();
if (p == 1.0) {
return upper;
}
// use the one-sided Chebyshev inequality to narrow the bracket
// cf. AbstractRealDistribution.inverseCumulativeProbability(double)
final double mu = getNumericalMean();
final double sigma = FastMath.sqrt(getNumericalVariance());
final boolean chebyshevApplies = !(Double.isInfinite(mu) || Double.isNaN(mu) ||
Double.isInfinite(sigma) || Double.isNaN(sigma) || sigma == 0.0);
if (chebyshevApplies) {
double k = FastMath.sqrt((1.0 - p) / p);
double tmp = mu - k * sigma;
if (tmp > lower) {
lower = ((int) FastMath.ceil(tmp)) - 1;
}
k = 1.0 / k;
tmp = mu + k * sigma;
if (tmp < upper) {
upper = ((int) FastMath.ceil(tmp)) - 1;
}
}
return solveInverseCumulativeProbability(p, lower, upper);
}
This is a utility function used by inverseCumulativeProbability(double)
. It assumes 0 < p < 1
and that the inverse cumulative probability lies in the bracket
(lower, upper]
. The implementation does simple bisection to find the smallest p
-quantile inf{x in Z | P(X<=x) >= p}
.
Params: - p – the cumulative probability
- lower – a value satisfying
cumulativeProbability(lower) < p
- upper – a value satisfying
p <= cumulativeProbability(upper)
Returns: the smallest p
-quantile of this distribution
/**
* This is a utility function used by {@link
* #inverseCumulativeProbability(double)}. It assumes {@code 0 < p < 1} and
* that the inverse cumulative probability lies in the bracket {@code
* (lower, upper]}. The implementation does simple bisection to find the
* smallest {@code p}-quantile <code>inf{x in Z | P(X<=x) >= p}</code>.
*
* @param p the cumulative probability
* @param lower a value satisfying {@code cumulativeProbability(lower) < p}
* @param upper a value satisfying {@code p <= cumulativeProbability(upper)}
* @return the smallest {@code p}-quantile of this distribution
*/
protected int solveInverseCumulativeProbability(final double p, int lower, int upper) {
while (lower + 1 < upper) {
int xm = (lower + upper) / 2;
if (xm < lower || xm > upper) {
/*
* Overflow.
* There will never be an overflow in both calculation methods
* for xm at the same time
*/
xm = lower + (upper - lower) / 2;
}
double pm = checkedCumulativeProbability(xm);
if (pm >= p) {
upper = xm;
} else {
lower = xm;
}
}
return upper;
}
{@inheritDoc} /** {@inheritDoc} */
public void reseedRandomGenerator(long seed) {
random.setSeed(seed);
randomData.reSeed(seed);
}
{@inheritDoc}
The default implementation uses the
inversion method.
/**
* {@inheritDoc}
*
* The default implementation uses the
* <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling">
* inversion method</a>.
*/
public int sample() {
return inverseCumulativeProbability(random.nextDouble());
}
{@inheritDoc} The default implementation generates the sample by calling sample()
in a loop. /**
* {@inheritDoc}
*
* The default implementation generates the sample by calling
* {@link #sample()} in a loop.
*/
public int[] sample(int sampleSize) {
if (sampleSize <= 0) {
throw new NotStrictlyPositiveException(
LocalizedFormats.NUMBER_OF_SAMPLES, sampleSize);
}
int[] out = new int[sampleSize];
for (int i = 0; i < sampleSize; i++) {
out[i] = sample();
}
return out;
}
Computes the cumulative probability function and checks for NaN
values returned. Throws MathInternalError
if the value is NaN
. Rethrows any exception encountered evaluating the cumulative probability function. Throws MathInternalError
if the cumulative probability function returns NaN
. Params: - argument – input value
Throws: - MathInternalError – if the cumulative probability is
NaN
Returns: the cumulative probability
/**
* Computes the cumulative probability function and checks for {@code NaN}
* values returned. Throws {@code MathInternalError} if the value is
* {@code NaN}. Rethrows any exception encountered evaluating the cumulative
* probability function. Throws {@code MathInternalError} if the cumulative
* probability function returns {@code NaN}.
*
* @param argument input value
* @return the cumulative probability
* @throws MathInternalError if the cumulative probability is {@code NaN}
*/
private double checkedCumulativeProbability(int argument)
throws MathInternalError {
double result = Double.NaN;
result = cumulativeProbability(argument);
if (Double.isNaN(result)) {
throw new MathInternalError(LocalizedFormats
.DISCRETE_CUMULATIVE_PROBABILITY_RETURNED_NAN, argument);
}
return result;
}
For a random variable X
whose values are distributed according to this distribution, this method returns log(P(X = x))
, where log
is the natural logarithm. In other words, this method represents the logarithm of the probability mass function (PMF) for the distribution. Note that due to the floating point precision and under/overflow issues, this method will for some distributions be more precise and faster than computing the logarithm of IntegerDistribution.probability(int)
. The default implementation simply computes the logarithm of probability(x)
.
Params: - x – the point at which the PMF is evaluated
Returns: the logarithm of the value of the probability mass function at x
/**
* For a random variable {@code X} whose values are distributed according to
* this distribution, this method returns {@code log(P(X = x))}, where
* {@code log} is the natural logarithm. In other words, this method
* represents the logarithm of the probability mass function (PMF) for the
* distribution. Note that due to the floating point precision and
* under/overflow issues, this method will for some distributions be more
* precise and faster than computing the logarithm of
* {@link #probability(int)}.
* <p>
* The default implementation simply computes the logarithm of {@code probability(x)}.</p>
*
* @param x the point at which the PMF is evaluated
* @return the logarithm of the value of the probability mass function at {@code x}
*/
public double logProbability(int x) {
return FastMath.log(probability(x));
}
}