/*
[The "BSD license"]
Copyright (c) 2005-2009 Terence Parr
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.antlr.runtime.tree;
import org.antlr.runtime.Token;
import org.antlr.runtime.TokenStream;
import org.antlr.runtime.misc.IntArray;
import java.util.*;
A buffered stream of tree nodes. Nodes can be from a tree of ANY kind.
This node stream sucks all nodes out of the tree specified in
the constructor during construction and makes pointers into
the tree using an array of Object pointers. The stream necessarily
includes pointers to DOWN and UP and EOF nodes.
This stream knows how to mark/release for backtracking.
This stream is most suitable for tree interpreters that need to
jump around a lot or for tree parsers requiring speed (at cost of memory).
There is some duplicated functionality here with UnBufferedTreeNodeStream
but just in bookkeeping, not tree walking etc...
TARGET DEVELOPERS:
This is the old CommonTreeNodeStream that buffered up entire node stream.
No need to implement really as new CommonTreeNodeStream is much better
and covers what we need.
@see CommonTreeNodeStream
/** A buffered stream of tree nodes. Nodes can be from a tree of ANY kind.
*
* This node stream sucks all nodes out of the tree specified in
* the constructor during construction and makes pointers into
* the tree using an array of Object pointers. The stream necessarily
* includes pointers to DOWN and UP and EOF nodes.
*
* This stream knows how to mark/release for backtracking.
*
* This stream is most suitable for tree interpreters that need to
* jump around a lot or for tree parsers requiring speed (at cost of memory).
* There is some duplicated functionality here with UnBufferedTreeNodeStream
* but just in bookkeeping, not tree walking etc...
*
* TARGET DEVELOPERS:
*
* This is the old CommonTreeNodeStream that buffered up entire node stream.
* No need to implement really as new CommonTreeNodeStream is much better
* and covers what we need.
*
* @see CommonTreeNodeStream
*/
public class BufferedTreeNodeStream implements TreeNodeStream {
public static final int DEFAULT_INITIAL_BUFFER_SIZE = 100;
public static final int INITIAL_CALL_STACK_SIZE = 10;
protected class StreamIterator implements Iterator<Object> {
int i = 0;
@Override
public boolean hasNext() {
return i<nodes.size();
}
@Override
public Object next() {
int current = i;
i++;
if ( current < nodes.size() ) {
return nodes.get(current);
}
return eof;
}
@Override
public void remove() {
throw new RuntimeException("cannot remove nodes from stream");
}
}
// all these navigation nodes are shared and hence they
// cannot contain any line/column info
protected Object down;
protected Object up;
protected Object eof;
The complete mapping from stream index to tree node.
This buffer includes pointers to DOWN, UP, and EOF nodes.
It is built upon ctor invocation. The elements are type
Object as we don't what the trees look like.
Load upon first need of the buffer so we can set token types
of interest for reverseIndexing. Slows us down a wee bit to
do all of the if p==-1 testing everywhere though.
/** The complete mapping from stream index to tree node.
* This buffer includes pointers to DOWN, UP, and EOF nodes.
* It is built upon ctor invocation. The elements are type
* Object as we don't what the trees look like.
*
* Load upon first need of the buffer so we can set token types
* of interest for reverseIndexing. Slows us down a wee bit to
* do all of the if p==-1 testing everywhere though.
*/
protected List<Object> nodes;
Pull nodes from which tree? /** Pull nodes from which tree? */
protected Object root;
IF this tree (root) was created from a token stream, track it. /** IF this tree (root) was created from a token stream, track it. */
protected TokenStream tokens;
What tree adaptor was used to build these trees /** What tree adaptor was used to build these trees */
TreeAdaptor adaptor;
Reuse same DOWN, UP navigation nodes unless this is true /** Reuse same DOWN, UP navigation nodes unless this is true */
protected boolean uniqueNavigationNodes = false;
The index into the nodes list of the current node (next node
to consume). If -1, nodes array not filled yet.
/** The index into the nodes list of the current node (next node
* to consume). If -1, nodes array not filled yet.
*/
protected int p = -1;
Track the last mark() call result value for use in rewind(). /** Track the last mark() call result value for use in rewind(). */
protected int lastMarker;
Stack of indexes used for push/pop calls /** Stack of indexes used for push/pop calls */
protected IntArray calls;
public BufferedTreeNodeStream(Object tree) {
this(new CommonTreeAdaptor(), tree);
}
public BufferedTreeNodeStream(TreeAdaptor adaptor, Object tree) {
this(adaptor, tree, DEFAULT_INITIAL_BUFFER_SIZE);
}
public BufferedTreeNodeStream(TreeAdaptor adaptor, Object tree, int initialBufferSize) {
this.root = tree;
this.adaptor = adaptor;
nodes = new ArrayList<Object>(initialBufferSize);
down = adaptor.create(Token.DOWN, "DOWN");
up = adaptor.create(Token.UP, "UP");
eof = adaptor.create(Token.EOF, "EOF");
}
Walk tree with depth-first-search and fill nodes buffer.
Don't do DOWN, UP nodes if its a list (t is isNil).
/** Walk tree with depth-first-search and fill nodes buffer.
* Don't do DOWN, UP nodes if its a list (t is isNil).
*/
protected void fillBuffer() {
fillBuffer(root);
//System.out.println("revIndex="+tokenTypeToStreamIndexesMap);
p = 0; // buffer of nodes intialized now
}
public void fillBuffer(Object t) {
boolean nil = adaptor.isNil(t);
if ( !nil ) {
nodes.add(t); // add this node
}
// add DOWN node if t has children
int n = adaptor.getChildCount(t);
if ( !nil && n>0 ) {
addNavigationNode(Token.DOWN);
}
// and now add all its children
for (int c=0; c<n; c++) {
Object child = adaptor.getChild(t,c);
fillBuffer(child);
}
// add UP node if t has children
if ( !nil && n>0 ) {
addNavigationNode(Token.UP);
}
}
What is the stream index for node? 0..n-1
Return -1 if node not found.
/** What is the stream index for node? 0..n-1
* Return -1 if node not found.
*/
protected int getNodeIndex(Object node) {
if ( p==-1 ) {
fillBuffer();
}
for (int i = 0; i < nodes.size(); i++) {
Object t = nodes.get(i);
if ( t==node ) {
return i;
}
}
return -1;
}
As we flatten the tree, we use UP, DOWN nodes to represent
the tree structure. When debugging we need unique nodes
so instantiate new ones when uniqueNavigationNodes is true.
/** As we flatten the tree, we use UP, DOWN nodes to represent
* the tree structure. When debugging we need unique nodes
* so instantiate new ones when uniqueNavigationNodes is true.
*/
protected void addNavigationNode(final int ttype) {
Object navNode;
if ( ttype==Token.DOWN ) {
if ( hasUniqueNavigationNodes() ) {
navNode = adaptor.create(Token.DOWN, "DOWN");
}
else {
navNode = down;
}
}
else {
if ( hasUniqueNavigationNodes() ) {
navNode = adaptor.create(Token.UP, "UP");
}
else {
navNode = up;
}
}
nodes.add(navNode);
}
@Override
public Object get(int i) {
if ( p==-1 ) {
fillBuffer();
}
return nodes.get(i);
}
@Override
public Object LT(int k) {
if ( p==-1 ) {
fillBuffer();
}
if ( k==0 ) {
return null;
}
if ( k<0 ) {
return LB(-k);
}
//System.out.print("LT(p="+p+","+k+")=");
if ( (p+k-1) >= nodes.size() ) {
return eof;
}
return nodes.get(p+k-1);
}
public Object getCurrentSymbol() { return LT(1); }
/*
public Object getLastTreeNode() {
int i = index();
if ( i>=size() ) {
i--; // if at EOF, have to start one back
}
System.out.println("start last node: "+i+" size=="+nodes.size());
while ( i>=0 &&
(adaptor.getType(get(i))==Token.EOF ||
adaptor.getType(get(i))==Token.UP ||
adaptor.getType(get(i))==Token.DOWN) )
{
i--;
}
System.out.println("stop at node: "+i+" "+nodes.get(i));
return nodes.get(i);
}
*/
Look backwards k nodes /** Look backwards k nodes */
protected Object LB(int k) {
if ( k==0 ) {
return null;
}
if ( (p-k)<0 ) {
return null;
}
return nodes.get(p-k);
}
@Override
public Object getTreeSource() {
return root;
}
@Override
public String getSourceName() {
return getTokenStream().getSourceName();
}
@Override
public TokenStream getTokenStream() {
return tokens;
}
public void setTokenStream(TokenStream tokens) {
this.tokens = tokens;
}
@Override
public TreeAdaptor getTreeAdaptor() {
return adaptor;
}
public void setTreeAdaptor(TreeAdaptor adaptor) {
this.adaptor = adaptor;
}
public boolean hasUniqueNavigationNodes() {
return uniqueNavigationNodes;
}
@Override
public void setUniqueNavigationNodes(boolean uniqueNavigationNodes) {
this.uniqueNavigationNodes = uniqueNavigationNodes;
}
@Override
public void consume() {
if ( p==-1 ) {
fillBuffer();
}
p++;
}
@Override
public int LA(int i) {
return adaptor.getType(LT(i));
}
@Override
public int mark() {
if ( p==-1 ) {
fillBuffer();
}
lastMarker = index();
return lastMarker;
}
@Override
public void release(int marker) {
// no resources to release
}
@Override
public int index() {
return p;
}
@Override
public void rewind(int marker) {
seek(marker);
}
@Override
public void rewind() {
seek(lastMarker);
}
@Override
public void seek(int index) {
if ( p==-1 ) {
fillBuffer();
}
p = index;
}
Make stream jump to a new location, saving old location.
Switch back with pop().
/** Make stream jump to a new location, saving old location.
* Switch back with pop().
*/
public void push(int index) {
if ( calls==null ) {
calls = new IntArray();
}
calls.push(p); // save current index
seek(index);
}
Seek back to previous index saved during last push() call.
Return top of stack (return index).
/** Seek back to previous index saved during last push() call.
* Return top of stack (return index).
*/
public int pop() {
int ret = calls.pop();
seek(ret);
return ret;
}
@Override
public void reset() {
p = 0;
lastMarker = 0;
if (calls != null) {
calls.clear();
}
}
@Override
public int size() {
if ( p==-1 ) {
fillBuffer();
}
return nodes.size();
}
public Iterator<Object> iterator() {
if ( p==-1 ) {
fillBuffer();
}
return new StreamIterator();
}
// TREE REWRITE INTERFACE
@Override
public void replaceChildren(Object parent, int startChildIndex, int stopChildIndex, Object t) {
if ( parent!=null ) {
adaptor.replaceChildren(parent, startChildIndex, stopChildIndex, t);
}
}
Used for testing, just return the token type stream /** Used for testing, just return the token type stream */
public String toTokenTypeString() {
if ( p==-1 ) {
fillBuffer();
}
StringBuilder buf = new StringBuilder();
for (int i = 0; i < nodes.size(); i++) {
Object t = nodes.get(i);
buf.append(" ");
buf.append(adaptor.getType(t));
}
return buf.toString();
}
Debugging /** Debugging */
public String toTokenString(int start, int stop) {
if ( p==-1 ) {
fillBuffer();
}
StringBuilder buf = new StringBuilder();
for (int i = start; i < nodes.size() && i <= stop; i++) {
Object t = nodes.get(i);
buf.append(" ");
buf.append(adaptor.getToken(t));
}
return buf.toString();
}
@Override
public String toString(Object start, Object stop) {
System.out.println("toString");
if ( start==null || stop==null ) {
return null;
}
if ( p==-1 ) {
fillBuffer();
}
//System.out.println("stop: "+stop);
if ( start instanceof CommonTree )
System.out.print("toString: "+((CommonTree)start).getToken()+", ");
else
System.out.println(start);
if ( stop instanceof CommonTree )
System.out.println(((CommonTree)stop).getToken());
else
System.out.println(stop);
// if we have the token stream, use that to dump text in order
if ( tokens!=null ) {
int beginTokenIndex = adaptor.getTokenStartIndex(start);
int endTokenIndex = adaptor.getTokenStopIndex(stop);
// if it's a tree, use start/stop index from start node
// else use token range from start/stop nodes
if ( adaptor.getType(stop)==Token.UP ) {
endTokenIndex = adaptor.getTokenStopIndex(start);
}
else if ( adaptor.getType(stop)==Token.EOF ) {
endTokenIndex = size()-2; // don't use EOF
}
return tokens.toString(beginTokenIndex, endTokenIndex);
}
// walk nodes looking for start
Object t;
int i = 0;
for (; i < nodes.size(); i++) {
t = nodes.get(i);
if ( t==start ) {
break;
}
}
// now walk until we see stop, filling string buffer with text
StringBuilder buf = new StringBuilder();
t = nodes.get(i);
while ( t!=stop ) {
String text = adaptor.getText(t);
if ( text==null ) {
text = " "+String.valueOf(adaptor.getType(t));
}
buf.append(text);
i++;
t = nodes.get(i);
}
// include stop node too
String text = adaptor.getText(stop);
if ( text==null ) {
text = " "+String.valueOf(adaptor.getType(stop));
}
buf.append(text);
return buf.toString();
}
}