/*
 * Copyright (c) 2013, 2015, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package org.graalvm.compiler.replacements.nodes.arithmetic;

import static org.graalvm.compiler.nodeinfo.NodeCycles.CYCLES_4;
import static org.graalvm.compiler.nodeinfo.NodeSize.SIZE_2;

import org.graalvm.compiler.core.common.type.IntegerStamp;
import org.graalvm.compiler.graph.NodeClass;
import org.graalvm.compiler.graph.spi.CanonicalizerTool;
import org.graalvm.compiler.nodeinfo.NodeInfo;
import org.graalvm.compiler.nodes.AbstractBeginNode;
import org.graalvm.compiler.nodes.ConstantNode;
import org.graalvm.compiler.nodes.ValueNode;
import org.graalvm.compiler.nodes.calc.MulNode;
import org.graalvm.compiler.nodes.spi.LoweringTool;

import jdk.vm.ci.meta.JavaConstant;
import jdk.vm.ci.meta.JavaKind;

Node representing an exact integer multiplication that will throw an ArithmeticException in case the addition would overflow the 32 bit range.
/** * Node representing an exact integer multiplication that will throw an {@link ArithmeticException} * in case the addition would overflow the 32 bit range. */
@NodeInfo(cycles = CYCLES_4, cyclesRationale = "mul+cmp", size = SIZE_2) public final class IntegerMulExactNode extends MulNode implements IntegerExactArithmeticNode { public static final NodeClass<IntegerMulExactNode> TYPE = NodeClass.create(IntegerMulExactNode.class); public IntegerMulExactNode(ValueNode x, ValueNode y) { super(TYPE, x, y); setStamp(x.stamp().unrestricted()); assert x.stamp().isCompatible(y.stamp()) && x.stamp() instanceof IntegerStamp; } @Override public boolean inferStamp() { /* * Note: it is not allowed to use the foldStamp method of the regular mul node as we do not * know the result stamp of this node if we do not know whether we may deopt. If we know we * can never overflow we will replace this node with its non overflow checking counterpart * anyway. */ return false; } @Override public ValueNode canonical(CanonicalizerTool tool, ValueNode forX, ValueNode forY) { if (forX.isConstant() && !forY.isConstant()) { return new IntegerMulExactNode(forY, forX); } if (forX.isConstant()) { return canonicalXconstant(forX, forY); } else if (forY.isConstant()) { long c = forY.asJavaConstant().asLong(); if (c == 1) { return forX; } if (c == 0) { return ConstantNode.forIntegerStamp(stamp(), 0); } } if (!mayOverFlow((IntegerStamp) x.stamp(), (IntegerStamp) y.stamp())) { return new MulNode(x, y).canonical(tool); } return this; } private static boolean mayOverFlow(IntegerStamp a, IntegerStamp b) { // see IntegerStamp#foldStamp for details assert a.getBits() == b.getBits(); if (a.upMask() == 0) { return false; } else if (b.upMask() == 0) { return false; } if (a.isUnrestricted()) { return true; } if (b.isUnrestricted()) { return true; } int bits = a.getBits(); // Checkstyle: stop long minN_a = a.lowerBound(); long maxN_a = Math.min(0, a.upperBound()); long minP_a = Math.max(0, a.lowerBound()); long maxP_a = a.upperBound(); long minN_b = b.lowerBound(); long maxN_b = Math.min(0, b.upperBound()); long minP_b = Math.max(0, b.lowerBound()); long maxP_b = b.upperBound(); // Checkstyle: resume boolean mayOverflow = false; if (a.canBePositive()) { if (b.canBePositive()) { mayOverflow |= IntegerStamp.multiplicationOverflows(maxP_a, maxP_b, bits); mayOverflow |= IntegerStamp.multiplicationOverflows(minP_a, minP_b, bits); } if (b.canBeNegative()) { mayOverflow |= IntegerStamp.multiplicationOverflows(minP_a, maxN_b, bits); mayOverflow |= IntegerStamp.multiplicationOverflows(maxP_a, minN_b, bits); } } if (a.canBeNegative()) { if (b.canBePositive()) { mayOverflow |= IntegerStamp.multiplicationOverflows(maxN_a, minP_b, bits); mayOverflow |= IntegerStamp.multiplicationOverflows(minN_a, maxP_b, bits); } if (b.canBeNegative()) { mayOverflow |= IntegerStamp.multiplicationOverflows(minN_a, minN_b, bits); mayOverflow |= IntegerStamp.multiplicationOverflows(maxN_a, maxN_b, bits); } } return mayOverflow; } private ValueNode canonicalXconstant(ValueNode forX, ValueNode forY) { JavaConstant xConst = forX.asJavaConstant(); JavaConstant yConst = forY.asJavaConstant(); assert xConst.getJavaKind() == yConst.getJavaKind(); try { if (xConst.getJavaKind() == JavaKind.Int) { return ConstantNode.forInt(Math.multiplyExact(xConst.asInt(), yConst.asInt())); } else { assert xConst.getJavaKind() == JavaKind.Long; return ConstantNode.forLong(Math.multiplyExact(xConst.asLong(), yConst.asLong())); } } catch (ArithmeticException ex) { // The operation will result in an overflow exception, so do not canonicalize. } return this; } @Override public IntegerExactArithmeticSplitNode createSplit(AbstractBeginNode next, AbstractBeginNode deopt) { return graph().add(new IntegerMulExactSplitNode(stamp(), getX(), getY(), next, deopt)); } @Override public void lower(LoweringTool tool) { IntegerExactArithmeticSplitNode.lower(tool, this); } }