package org.graalvm.compiler.nodes;
import static org.graalvm.compiler.nodeinfo.InputType.Association;
import static org.graalvm.compiler.nodeinfo.NodeCycles.CYCLES_0;
import static org.graalvm.compiler.nodeinfo.NodeSize.SIZE_0;
import java.util.List;
import org.graalvm.compiler.debug.Debug;
import org.graalvm.compiler.graph.IterableNodeType;
import org.graalvm.compiler.graph.Node;
import org.graalvm.compiler.graph.NodeClass;
import org.graalvm.compiler.graph.NodeInputList;
import org.graalvm.compiler.graph.iterators.NodeIterable;
import org.graalvm.compiler.graph.spi.Simplifiable;
import org.graalvm.compiler.graph.spi.SimplifierTool;
import org.graalvm.compiler.nodeinfo.NodeInfo;
import org.graalvm.compiler.nodes.spi.LIRLowerable;
import org.graalvm.compiler.nodes.spi.NodeLIRBuilderTool;
import org.graalvm.compiler.nodes.util.GraphUtil;
@NodeInfo(allowedUsageTypes = Association, cycles = CYCLES_0, size = SIZE_0)
public abstract class AbstractMergeNode extends BeginStateSplitNode implements IterableNodeType, Simplifiable, LIRLowerable {
public static final NodeClass<AbstractMergeNode> TYPE = NodeClass.create(AbstractMergeNode.class);
protected AbstractMergeNode(NodeClass<? extends AbstractMergeNode> c) {
super(c);
}
@Input(Association) protected NodeInputList<EndNode> ends = new NodeInputList<>(this);
@Override
public void generate(NodeLIRBuilderTool gen) {
gen.visitMerge(this);
}
public int forwardEndIndex(EndNode end) {
return ends.indexOf(end);
}
public void addForwardEnd(EndNode end) {
ends.add(end);
}
public final int forwardEndCount() {
return ends.size();
}
public final EndNode forwardEndAt(int index) {
return ends.get(index);
}
@Override
public NodeIterable<EndNode> cfgPredecessors() {
return ends;
}
public boolean isPhiAtMerge(Node value) {
return value instanceof PhiNode && ((PhiNode) value).merge() == this;
}
public void removeEnd(AbstractEndNode pred) {
int predIndex = phiPredecessorIndex(pred);
assert predIndex != -1;
deleteEnd(pred);
for (PhiNode phi : phis().snapshot()) {
if (phi.isDeleted()) {
continue;
}
ValueNode removedValue = phi.valueAt(predIndex);
phi.removeInput(predIndex);
if (removedValue != null && removedValue.isAlive() && removedValue.hasNoUsages() && GraphUtil.isFloatingNode(removedValue)) {
GraphUtil.killWithUnusedFloatingInputs(removedValue);
}
}
}
protected void deleteEnd(AbstractEndNode end) {
ends.remove(end);
}
public void clearEnds() {
ends.clear();
}
public NodeInputList<EndNode> forwardEnds() {
return ends;
}
public int phiPredecessorCount() {
return forwardEndCount();
}
public int phiPredecessorIndex(AbstractEndNode pred) {
return forwardEndIndex((EndNode) pred);
}
public AbstractEndNode phiPredecessorAt(int index) {
return forwardEndAt(index);
}
public NodeIterable<PhiNode> phis() {
return this.usages().filter(PhiNode.class).filter(this::isPhiAtMerge);
}
public NodeIterable<ValuePhiNode> valuePhis() {
return this.usages().filter(ValuePhiNode.class).filter(this::isPhiAtMerge);
}
@Override
public NodeIterable<Node> anchored() {
return super.anchored().filter(n -> !isPhiAtMerge(n));
}
@Override
public void simplify(SimplifierTool tool) {
FixedNode currentNext = next();
if (currentNext instanceof AbstractEndNode) {
AbstractEndNode origLoopEnd = (AbstractEndNode) currentNext;
AbstractMergeNode merge = origLoopEnd.merge();
if (merge instanceof LoopBeginNode && !(origLoopEnd instanceof LoopEndNode)) {
return;
}
if (this.anchored().isNotEmpty()) {
return;
}
if (merge.stateAfter() == null && this.stateAfter() != null) {
return;
}
for (PhiNode phi : phis()) {
for (Node usage : phi.usages()) {
if (!(usage instanceof VirtualState) && !merge.isPhiAtMerge(usage)) {
return;
}
}
}
Debug.log("Split %s into ends for %s.", this, merge);
int numEnds = this.forwardEndCount();
for (int i = 0; i < numEnds - 1; i++) {
AbstractEndNode end = forwardEndAt(numEnds - 1 - i);
if (tool != null) {
tool.addToWorkList(end);
}
AbstractEndNode newEnd;
if (merge instanceof LoopBeginNode) {
newEnd = graph().add(new LoopEndNode((LoopBeginNode) merge));
} else {
EndNode tmpEnd = graph().add(new EndNode());
merge.addForwardEnd(tmpEnd);
newEnd = tmpEnd;
}
for (PhiNode phi : merge.phis()) {
ValueNode v = phi.valueAt(origLoopEnd);
ValueNode newInput;
if (isPhiAtMerge(v)) {
PhiNode endPhi = (PhiNode) v;
newInput = endPhi.valueAt(end);
} else {
newInput = v;
}
phi.addInput(newInput);
}
this.removeEnd(end);
end.replaceAtPredecessor(newEnd);
end.safeDelete();
if (tool != null) {
tool.addToWorkList(newEnd.predecessor());
}
}
graph().reduceTrivialMerge(this);
} else if (currentNext instanceof ReturnNode) {
ReturnNode returnNode = (ReturnNode) currentNext;
if (anchored().isNotEmpty() || returnNode.getMemoryMap() != null) {
return;
}
List<PhiNode> phis = phis().snapshot();
for (PhiNode phi : phis) {
for (Node usage : phi.usages()) {
if (usage != returnNode && !(usage instanceof FrameState)) {
return;
}
}
}
ValuePhiNode returnValuePhi = returnNode.result() == null || !isPhiAtMerge(returnNode.result()) ? null : (ValuePhiNode) returnNode.result();
List<EndNode> endNodes = forwardEnds().snapshot();
for (EndNode end : endNodes) {
ReturnNode newReturn = graph().add(new ReturnNode(returnValuePhi == null ? returnNode.result() : returnValuePhi.valueAt(end)));
if (tool != null) {
tool.addToWorkList(end.predecessor());
}
end.replaceAtPredecessor(newReturn);
}
GraphUtil.killCFG(this);
for (EndNode end : endNodes) {
end.safeDelete();
}
for (PhiNode phi : phis) {
if (tool.allUsagesAvailable() && phi.isAlive() && phi.hasNoUsages()) {
GraphUtil.killWithUnusedFloatingInputs(phi);
}
}
}
}
}