/*
 * Copyright (c) 2013, 2016, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package org.graalvm.compiler.lir.sparc;

import static org.graalvm.compiler.asm.sparc.SPARCAssembler.BPCC;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.CBCOND;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.FBPCC;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.INSTRUCTION_SIZE;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.isSimm10;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.isSimm11;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.isSimm13;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.isSimm5;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.Annul.ANNUL;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.Annul.NOT_ANNUL;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.BranchPredict.PREDICT_NOT_TAKEN;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.BranchPredict.PREDICT_TAKEN;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.CC.Fcc0;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.CC.Icc;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.CC.Xcc;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.Always;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.Equal;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_Equal;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_Greater;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_GreaterOrEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_Less;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_LessOrEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_UnorderedGreaterOrEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_UnorderedOrEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_UnorderedOrGreater;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_UnorderedOrLess;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.F_UnorderedOrLessOrEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.Greater;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.GreaterEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.GreaterEqualUnsigned;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.GreaterUnsigned;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.Less;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.LessEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.LessEqualUnsigned;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.LessUnsigned;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag.NotEqual;
import static org.graalvm.compiler.asm.sparc.SPARCAssembler.Op3s.Subcc;
import static org.graalvm.compiler.lir.LIRInstruction.OperandFlag.CONST;
import static org.graalvm.compiler.lir.LIRInstruction.OperandFlag.HINT;
import static org.graalvm.compiler.lir.LIRInstruction.OperandFlag.ILLEGAL;
import static org.graalvm.compiler.lir.LIRInstruction.OperandFlag.REG;
import static org.graalvm.compiler.lir.LIRValueUtil.asJavaConstant;
import static org.graalvm.compiler.lir.LIRValueUtil.isConstantValue;
import static org.graalvm.compiler.lir.LIRValueUtil.isJavaConstant;
import static org.graalvm.compiler.lir.sparc.SPARCMove.const2reg;
import static org.graalvm.compiler.lir.sparc.SPARCOP3Op.emitOp3;
import static jdk.vm.ci.code.ValueUtil.asRegister;
import static jdk.vm.ci.sparc.SPARC.CPU;
import static jdk.vm.ci.sparc.SPARC.g0;
import static jdk.vm.ci.sparc.SPARCKind.WORD;
import static jdk.vm.ci.sparc.SPARCKind.XWORD;

import java.util.ArrayList;
import java.util.EnumSet;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.graalvm.compiler.asm.Assembler;
import org.graalvm.compiler.asm.Assembler.LabelHint;
import org.graalvm.compiler.asm.Label;
import org.graalvm.compiler.asm.NumUtil;
import org.graalvm.compiler.asm.sparc.SPARCAssembler;
import org.graalvm.compiler.asm.sparc.SPARCAssembler.BranchPredict;
import org.graalvm.compiler.asm.sparc.SPARCAssembler.CC;
import org.graalvm.compiler.asm.sparc.SPARCAssembler.CMOV;
import org.graalvm.compiler.asm.sparc.SPARCAssembler.ConditionFlag;
import org.graalvm.compiler.asm.sparc.SPARCMacroAssembler;
import org.graalvm.compiler.asm.sparc.SPARCMacroAssembler.ScratchRegister;
import org.graalvm.compiler.core.common.calc.Condition;
import org.graalvm.compiler.debug.GraalError;
import org.graalvm.compiler.lir.LIRInstructionClass;
import org.graalvm.compiler.lir.LabelRef;
import org.graalvm.compiler.lir.Opcode;
import org.graalvm.compiler.lir.StandardOp;
import org.graalvm.compiler.lir.SwitchStrategy;
import org.graalvm.compiler.lir.SwitchStrategy.BaseSwitchClosure;
import org.graalvm.compiler.lir.Variable;
import org.graalvm.compiler.lir.asm.CompilationResultBuilder;

import jdk.vm.ci.code.Register;
import jdk.vm.ci.meta.AllocatableValue;
import jdk.vm.ci.meta.Constant;
import jdk.vm.ci.meta.JavaConstant;
import jdk.vm.ci.meta.PlatformKind;
import jdk.vm.ci.meta.Value;
import jdk.vm.ci.sparc.SPARC.CPUFeature;
import jdk.vm.ci.sparc.SPARCKind;

public class SPARCControlFlow {
    // This describes the maximum offset between the first emitted (load constant in to scratch,
    // if does not fit into simm5 of cbcond) instruction and the final branch instruction
    private static final int maximumSelfOffsetInstructions = 2;

    public static final class ReturnOp extends SPARCBlockEndOp {
        public static final LIRInstructionClass<ReturnOp> TYPE = LIRInstructionClass.create(ReturnOp.class);
        public static final SizeEstimate SIZE = SizeEstimate.create(2);

        @Use({REG, ILLEGAL}) protected Value x;

        public ReturnOp(Value x) {
            super(TYPE, SIZE);
            this.x = x;
        }

        @Override
        public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
            emitCodeHelper(crb, masm);
        }

        public static void emitCodeHelper(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
            masm.ret();
            // On SPARC we always leave the frame (in the delay slot).
            crb.frameContext.leave(crb);
        }
    }

    public static final class CompareBranchOp extends SPARCBlockEndOp implements SPARCDelayedControlTransfer {
        public static final LIRInstructionClass<CompareBranchOp> TYPE = LIRInstructionClass.create(CompareBranchOp.class);
        public static final SizeEstimate SIZE = SizeEstimate.create(3);
        static final EnumSet<SPARCKind> SUPPORTED_KINDS = EnumSet.of(XWORD, WORD);

        @Use({REG}) protected Value x;
        @Use({REG, CONST}) protected Value y;
        private ConditionFlag conditionFlag;
        protected final LabelRef trueDestination;
        protected LabelHint trueDestinationHint;
        protected final LabelRef falseDestination;
        protected LabelHint falseDestinationHint;
        protected final SPARCKind kind;
        protected final boolean unorderedIsTrue;
        private boolean emitted = false;
        private int delaySlotPosition = -1;
        private double trueDestinationProbability;

        public CompareBranchOp(Value x, Value y, Condition condition, LabelRef trueDestination, LabelRef falseDestination, SPARCKind kind, boolean unorderedIsTrue, double trueDestinationProbability) {
            super(TYPE, SIZE);
            this.x = x;
            this.y = y;
            this.trueDestination = trueDestination;
            this.falseDestination = falseDestination;
            this.kind = kind;
            this.unorderedIsTrue = unorderedIsTrue;
            this.trueDestinationProbability = trueDestinationProbability;
            conditionFlag = fromCondition(kind.isInteger(), condition, unorderedIsTrue);
        }

        @Override
        public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
            if (emitted) { // Only if delayed control transfer is used we must check this
                assert masm.position() - delaySlotPosition == 4 : "Only one instruction can be stuffed into the delay slot";
            }
            if (!emitted) {
                requestHints(masm);
                int targetPosition = getTargetPosition(masm);
                if (canUseShortBranch(crb, masm, targetPosition)) {
                    emitted = emitShortCompareBranch(crb, masm);
                }
                if (!emitted) { // No short compare/branch was used, so we go into fallback
                    emitted = emitLongCompareBranch(crb, masm, true);
                    emitted = true;
                }
            }
            assert emitted;
        }

        private boolean emitLongCompareBranch(CompilationResultBuilder crb, SPARCMacroAssembler masm, boolean withDelayedNop) {
            emitOp3(masm, Subcc, x, y);
            return emitBranch(crb, masm, kind, conditionFlag, trueDestination, falseDestination, withDelayedNop, trueDestinationProbability);
        }

        private static int getTargetPosition(Assembler asm) {
            return asm.position() + maximumSelfOffsetInstructions * asm.target.wordSize;
        }

        @Override
        public void emitControlTransfer(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
            requestHints(masm);
            // When we use short branches, no delay slot is available
            int targetPosition = getTargetPosition(masm);
            if (!canUseShortBranch(crb, masm, targetPosition)) {
                emitted = emitLongCompareBranch(crb, masm, false);
                if (emitted) {
                    delaySlotPosition = masm.position();
                }
            }
        }

        private void requestHints(SPARCMacroAssembler masm) {
            if (trueDestinationHint == null) {
                this.trueDestinationHint = masm.requestLabelHint(trueDestination.label());
            }
            if (falseDestinationHint == null) {
                this.falseDestinationHint = masm.requestLabelHint(falseDestination.label());
            }
        }

        
Tries to use the emit the compare/branch instruction.

CBcond has follwing limitations

  • Immediate field is only 5 bit and is on the right
  • Jump offset is maximum of -+512 instruction

    We get from outside

    • at least one of trueDestination falseDestination is within reach of +-512 instructions
    • two registers OR one register and a constant which fits simm13

      We do:

      • find out which target needs to be branched conditionally
      • find out if fall-through is possible, if not, a unconditional branch is needed after cbcond (needJump=true)
      • if no fall through: we need to put the closer jump into the cbcond branch and the farther into the jmp (unconditional branch)
      • if constant on the left side, mirror to be on the right
      • if constant on right does not fit into simm5, put it into a scratch register
Params:
  • crb –
  • masm –
Returns:true if the branch could be emitted
/** * Tries to use the emit the compare/branch instruction. * <p> * CBcond has follwing limitations * <ul> * <li>Immediate field is only 5 bit and is on the right * <li>Jump offset is maximum of -+512 instruction * * <p> * We get from outside * <ul> * <li>at least one of trueDestination falseDestination is within reach of +-512 * instructions * <li>two registers OR one register and a constant which fits simm13 * * <p> * We do: * <ul> * <li>find out which target needs to be branched conditionally * <li>find out if fall-through is possible, if not, a unconditional branch is needed after * cbcond (needJump=true) * <li>if no fall through: we need to put the closer jump into the cbcond branch and the * farther into the jmp (unconditional branch) * <li>if constant on the left side, mirror to be on the right * <li>if constant on right does not fit into simm5, put it into a scratch register * * @param crb * @param masm * @return true if the branch could be emitted */
private boolean emitShortCompareBranch(CompilationResultBuilder crb, SPARCMacroAssembler masm) { ConditionFlag actualConditionFlag = conditionFlag; Label actualTrueTarget = trueDestination.label(); Label actualFalseTarget = falseDestination.label(); Label tmpTarget; boolean needJump; if (crb.isSuccessorEdge(trueDestination)) { actualConditionFlag = conditionFlag.negate(); tmpTarget = actualTrueTarget; actualTrueTarget = actualFalseTarget; actualFalseTarget = tmpTarget; needJump = false; } else { needJump = !crb.isSuccessorEdge(falseDestination); int targetPosition = getTargetPosition(masm); if (needJump && !isShortBranch(masm, targetPosition, trueDestinationHint, actualTrueTarget)) { // we have to jump in either way, so we must put the shorter // branch into the actualTarget as only one of the two jump targets // is guaranteed to be simm10 actualConditionFlag = actualConditionFlag.negate(); tmpTarget = actualTrueTarget; actualTrueTarget = actualFalseTarget; actualFalseTarget = tmpTarget; } } emitCBCond(masm, x, y, actualTrueTarget, actualConditionFlag); if (needJump) { masm.jmp(actualFalseTarget); masm.nop(); } return true; } private void emitCBCond(SPARCMacroAssembler masm, Value actualX, Value actualY, Label actualTrueTarget, ConditionFlag cFlag) { PlatformKind xKind = actualX.getPlatformKind(); boolean isLong = kind == SPARCKind.XWORD; if (isJavaConstant(actualY)) { JavaConstant c = asJavaConstant(actualY); long constantY = c.isNull() ? 0 : c.asLong(); assert NumUtil.isInt(constantY); CBCOND.emit(masm, cFlag, isLong, asRegister(actualX, xKind), (int) constantY, actualTrueTarget); } else { CBCOND.emit(masm, cFlag, isLong, asRegister(actualX, xKind), asRegister(actualY, xKind), actualTrueTarget); } } private boolean canUseShortBranch(CompilationResultBuilder crb, SPARCAssembler asm, int position) { if (!asm.hasFeature(CPUFeature.CBCOND)) { return false; } if (!((SPARCKind) x.getPlatformKind()).isInteger()) { return false; } // Do not use short branch, if the y value is a constant and does not fit into simm5 but // fits into simm13; this means the code with CBcond would be longer as the code without // CBcond. if (isJavaConstant(y) && !isSimm5(asJavaConstant(y)) && isSimm13(asJavaConstant(y))) { return false; } boolean hasShortJumpTarget = false; if (!crb.isSuccessorEdge(trueDestination)) { hasShortJumpTarget |= isShortBranch(asm, position, trueDestinationHint, trueDestination.label()); } if (!crb.isSuccessorEdge(falseDestination)) { hasShortJumpTarget |= isShortBranch(asm, position, falseDestinationHint, falseDestination.label()); } return hasShortJumpTarget; } @Override public void resetState() { emitted = false; delaySlotPosition = -1; } @Override public void verify() { super.verify(); assert SUPPORTED_KINDS.contains(kind) : kind; assert !isConstantValue(x); assert x.getPlatformKind().equals(kind) && (isConstantValue(y) || y.getPlatformKind().equals(kind)) : x + " " + y; } } public static boolean isShortBranch(SPARCAssembler asm, int position, LabelHint hint, Label label) { int disp = 0; boolean dispValid = true; if (label.isBound()) { disp = label.position() - position; } else if (hint != null && hint.isValid()) { disp = hint.getTarget() - hint.getPosition(); } else { dispValid = false; } if (dispValid) { if (disp < 0) { disp -= maximumSelfOffsetInstructions * asm.target.wordSize; } else { disp += maximumSelfOffsetInstructions * asm.target.wordSize; } return isSimm10(disp >> 2); } else if (hint == null) { asm.requestLabelHint(label); } return false; } public static final class BranchOp extends SPARCBlockEndOp implements StandardOp.BranchOp { public static final LIRInstructionClass<BranchOp> TYPE = LIRInstructionClass.create(BranchOp.class); public static final SizeEstimate SIZE = SizeEstimate.create(2); protected final ConditionFlag conditionFlag; protected final LabelRef trueDestination; protected final LabelRef falseDestination; protected final SPARCKind kind; protected final double trueDestinationProbability; public BranchOp(ConditionFlag conditionFlag, LabelRef trueDestination, LabelRef falseDestination, SPARCKind kind, double trueDestinationProbability) { super(TYPE, SIZE); this.trueDestination = trueDestination; this.falseDestination = falseDestination; this.kind = kind; this.conditionFlag = conditionFlag; this.trueDestinationProbability = trueDestinationProbability; } @Override public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) { emitBranch(crb, masm, kind, conditionFlag, trueDestination, falseDestination, true, trueDestinationProbability); } } private static boolean emitBranch(CompilationResultBuilder crb, SPARCMacroAssembler masm, SPARCKind kind, ConditionFlag conditionFlag, LabelRef trueDestination, LabelRef falseDestination, boolean withDelayedNop, double trueDestinationProbability) { Label actualTarget; ConditionFlag actualConditionFlag; boolean needJump; BranchPredict predictTaken; if (falseDestination != null && crb.isSuccessorEdge(trueDestination)) { actualConditionFlag = conditionFlag != null ? conditionFlag.negate() : null; actualTarget = falseDestination.label(); needJump = false; predictTaken = trueDestinationProbability < .5d ? PREDICT_TAKEN : PREDICT_NOT_TAKEN; } else { actualConditionFlag = conditionFlag; actualTarget = trueDestination.label(); needJump = falseDestination != null && !crb.isSuccessorEdge(falseDestination); predictTaken = trueDestinationProbability > .5d ? PREDICT_TAKEN : PREDICT_NOT_TAKEN; } if (!withDelayedNop && needJump) { // We cannot make use of the delay slot when we jump in true-case and false-case return false; } if (kind.isFloat()) { FBPCC.emit(masm, Fcc0, actualConditionFlag, NOT_ANNUL, predictTaken, actualTarget); } else { assert kind.isInteger(); CC cc = kind.equals(WORD) ? Icc : Xcc; BPCC.emit(masm, cc, actualConditionFlag, NOT_ANNUL, predictTaken, actualTarget); } if (withDelayedNop) { masm.nop(); // delay slot } if (needJump) { masm.jmp(falseDestination.label()); } return true; } public static class StrategySwitchOp extends SPARCBlockEndOp { public static final LIRInstructionClass<StrategySwitchOp> TYPE = LIRInstructionClass.create(StrategySwitchOp.class); protected Constant[] keyConstants; private final LabelRef[] keyTargets; private LabelRef defaultTarget; @Alive({REG}) protected Value key; @Alive({REG, ILLEGAL}) protected Value constantTableBase; @Temp({REG}) protected Value scratch; protected final SwitchStrategy strategy; private final Map<Label, LabelHint> labelHints; private final List<Label> conditionalLabels = new ArrayList<>(); public StrategySwitchOp(Value constantTableBase, SwitchStrategy strategy, LabelRef[] keyTargets, LabelRef defaultTarget, Value key, Value scratch) { this(TYPE, constantTableBase, strategy, keyTargets, defaultTarget, key, scratch); } protected StrategySwitchOp(LIRInstructionClass<? extends StrategySwitchOp> c, Value constantTableBase, SwitchStrategy strategy, LabelRef[] keyTargets, LabelRef defaultTarget, Value key, Value scratch) { super(c); this.strategy = strategy; this.keyConstants = strategy.getKeyConstants(); this.keyTargets = keyTargets; this.defaultTarget = defaultTarget; this.constantTableBase = constantTableBase; this.key = key; this.scratch = scratch; this.labelHints = new HashMap<>(); assert keyConstants.length == keyTargets.length; assert keyConstants.length == strategy.keyProbabilities.length; } @Override public void emitCode(final CompilationResultBuilder crb, final SPARCMacroAssembler masm) { final Register keyRegister = asRegister(key); final Register constantBaseRegister = AllocatableValue.ILLEGAL.equals(constantTableBase) ? g0 : asRegister(constantTableBase); strategy.run(new SwitchClosure(keyRegister, constantBaseRegister, crb, masm)); } public class SwitchClosure extends BaseSwitchClosure { private int conditionalLabelPointer = 0; protected final Register keyRegister; protected final Register constantBaseRegister; protected final CompilationResultBuilder crb; protected final SPARCMacroAssembler masm; protected SwitchClosure(Register keyRegister, Register constantBaseRegister, CompilationResultBuilder crb, SPARCMacroAssembler masm) { super(crb, masm, keyTargets, defaultTarget); this.keyRegister = keyRegister; this.constantBaseRegister = constantBaseRegister; this.crb = crb; this.masm = masm; }
This method caches the generated labels over two assembly passes to get information about branch lengths.
/** * This method caches the generated labels over two assembly passes to get information * about branch lengths. */
@Override public Label conditionalJump(int index, Condition condition) { Label label; if (conditionalLabelPointer <= conditionalLabels.size()) { label = new Label(); conditionalLabels.add(label); conditionalLabelPointer = conditionalLabels.size(); } else { // TODO: (sa) We rely here on the order how the labels are generated during // code generation; if the order is not stable ower two assembly passes, the // result can be wrong label = conditionalLabels.get(conditionalLabelPointer++); } conditionalJump(index, condition, label); return label; } @Override protected void conditionalJump(int index, Condition condition, Label target) { JavaConstant constant = (JavaConstant) keyConstants[index]; CC conditionCode; Long bits = constant.asLong(); switch (constant.getJavaKind()) { case Char: case Byte: case Short: case Int: conditionCode = CC.Icc; break; case Long: conditionCode = CC.Xcc; break; default: throw new GraalError("switch only supported for int, long and object"); } ConditionFlag conditionFlag = fromCondition(keyRegister.getRegisterCategory().equals(CPU), condition, false); LabelHint hint = requestHint(masm, target); boolean isShortConstant = isSimm5(constant); int cbCondPosition = masm.position(); if (!isShortConstant) { // Load constant takes one instruction cbCondPosition += INSTRUCTION_SIZE; } boolean canUseShortBranch = masm.hasFeature(CPUFeature.CBCOND) && isShortBranch(masm, cbCondPosition, hint, target); if (bits != null && canUseShortBranch) { if (isShortConstant) { CBCOND.emit(masm, conditionFlag, conditionCode == Xcc, keyRegister, (int) (long) bits, target); } else { Register scratchRegister = asRegister(scratch); const2reg(crb, masm, scratch, constantBaseRegister, (JavaConstant) keyConstants[index], SPARCDelayedControlTransfer.DUMMY); CBCOND.emit(masm, conditionFlag, conditionCode == Xcc, keyRegister, scratchRegister, target); } } else { if (bits != null && isSimm13(constant)) { masm.cmp(keyRegister, (int) (long) bits); // Cast is safe } else { Register scratchRegister = asRegister(scratch); const2reg(crb, masm, scratch, constantBaseRegister, (JavaConstant) keyConstants[index], SPARCDelayedControlTransfer.DUMMY); masm.cmp(keyRegister, scratchRegister); } BPCC.emit(masm, conditionCode, conditionFlag, ANNUL, PREDICT_TAKEN, target); masm.nop(); // delay slot } } } protected LabelHint requestHint(SPARCMacroAssembler masm, Label label) { LabelHint hint = labelHints.get(label); if (hint == null) { hint = masm.requestLabelHint(label); labelHints.put(label, hint); } return hint; } protected int estimateEmbeddedSize(Constant c) { JavaConstant v = (JavaConstant) c; if (!SPARCAssembler.isSimm13(v)) { return v.getJavaKind().getByteCount(); } else { return 0; } } @Override public SizeEstimate estimateSize() { int constantBytes = 0; for (Constant c : keyConstants) { constantBytes += estimateEmbeddedSize(c); } return new SizeEstimate(4 * keyTargets.length, constantBytes); } } public static final class TableSwitchOp extends SPARCBlockEndOp { public static final LIRInstructionClass<TableSwitchOp> TYPE = LIRInstructionClass.create(TableSwitchOp.class); private final int lowKey; private final LabelRef defaultTarget; private final LabelRef[] targets; @Alive protected Value index; @Temp protected Value scratch; public TableSwitchOp(final int lowKey, final LabelRef defaultTarget, final LabelRef[] targets, Variable index, Variable scratch) { super(TYPE); this.lowKey = lowKey; this.defaultTarget = defaultTarget; this.targets = targets; this.index = index; this.scratch = scratch; } @Override public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) { Register value = asRegister(index, SPARCKind.WORD); Register scratchReg = asRegister(scratch, SPARCKind.XWORD); // Compare index against jump table bounds int highKey = lowKey + targets.length - 1; // subtract the low value from the switch value if (isSimm13(lowKey)) { masm.sub(value, lowKey, scratchReg); } else { try (ScratchRegister sc = masm.getScratchRegister()) { Register scratch2 = sc.getRegister(); masm.setx(lowKey, scratch2, false); masm.sub(value, scratch2, scratchReg); } } int upperLimit = highKey - lowKey; try (ScratchRegister sc = masm.getScratchRegister()) { Register scratch2 = sc.getRegister(); if (isSimm13(upperLimit)) { masm.cmp(scratchReg, upperLimit); } else { masm.setx(upperLimit, scratch2, false); masm.cmp(scratchReg, upperLimit); } // Jump to default target if index is not within the jump table if (defaultTarget != null) { BPCC.emit(masm, Icc, GreaterUnsigned, NOT_ANNUL, PREDICT_TAKEN, defaultTarget.label()); masm.nop(); // delay slot } // Load jump table entry into scratch and jump to it masm.sll(scratchReg, 3, scratchReg); // Multiply by 8 // Zero the left bits sll with shcnt>0 does not mask upper 32 bits masm.srl(scratchReg, 0, scratchReg); masm.rdpc(scratch2); // The jump table follows four instructions after rdpc masm.add(scratchReg, 4 * 4, scratchReg); masm.jmpl(scratch2, scratchReg, g0); } masm.nop(); // Emit jump table entries for (LabelRef target : targets) { BPCC.emit(masm, Xcc, Always, NOT_ANNUL, PREDICT_TAKEN, target.label()); masm.nop(); // delay slot } } @Override public SizeEstimate estimateSize() { return SizeEstimate.create(17 + targets.length * 2); } } @Opcode("CMOVE") public static final class CondMoveOp extends SPARCLIRInstruction { public static final LIRInstructionClass<CondMoveOp> TYPE = LIRInstructionClass.create(CondMoveOp.class); @Def({REG, HINT}) protected Value result; @Use({REG, CONST}) protected Value trueValue; @Use({REG, CONST}) protected Value falseValue; private final ConditionFlag condition; private final CC cc; private final CMOV cmove; public CondMoveOp(CMOV cmove, CC cc, ConditionFlag condition, Value trueValue, Value falseValue, Value result) { super(TYPE); this.result = result; this.condition = condition; this.trueValue = trueValue; this.falseValue = falseValue; this.cc = cc; this.cmove = cmove; } @Override public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) { if (result.equals(trueValue)) { // We have the true value in place, do he opposite cmove(masm, condition.negate(), falseValue); } else if (result.equals(falseValue)) { cmove(masm, condition, trueValue); } else { // We have to move one of the input values to the result ConditionFlag actualCondition = condition; Value actualTrueValue = trueValue; Value actualFalseValue = falseValue; if (isJavaConstant(falseValue) && isSimm11(asJavaConstant(falseValue))) { actualCondition = condition.negate(); actualTrueValue = falseValue; actualFalseValue = trueValue; } SPARCMove.move(crb, masm, result, actualFalseValue, SPARCDelayedControlTransfer.DUMMY); cmove(masm, actualCondition, actualTrueValue); } } private void cmove(SPARCMacroAssembler masm, ConditionFlag localCondition, Value value) { if (isConstantValue(value)) { cmove.emit(masm, localCondition, cc, asImmediate(asJavaConstant(value)), asRegister(result)); } else { cmove.emit(masm, localCondition, cc, asRegister(value), asRegister(result)); } } @Override public SizeEstimate estimateSize() { int constantSize = 0; if (isJavaConstant(trueValue) && !SPARCAssembler.isSimm13(asJavaConstant(trueValue))) { constantSize += trueValue.getPlatformKind().getSizeInBytes(); } if (isJavaConstant(falseValue) && !SPARCAssembler.isSimm13(asJavaConstant(falseValue))) { constantSize += trueValue.getPlatformKind().getSizeInBytes(); } return SizeEstimate.create(3, constantSize); } } public static ConditionFlag fromCondition(boolean integer, Condition cond, boolean unorderedIsTrue) { if (integer) { switch (cond) { case EQ: return Equal; case NE: return NotEqual; case BT: return LessUnsigned; case LT: return Less; case BE: return LessEqualUnsigned; case LE: return LessEqual; case AE: return GreaterEqualUnsigned; case GE: return GreaterEqual; case AT: return GreaterUnsigned; case GT: return Greater; } throw GraalError.shouldNotReachHere("Unimplemented for: " + cond); } else { switch (cond) { case EQ: return unorderedIsTrue ? F_UnorderedOrEqual : F_Equal; case NE: return ConditionFlag.F_NotEqual; case LT: return unorderedIsTrue ? F_UnorderedOrLess : F_Less; case LE: return unorderedIsTrue ? F_UnorderedOrLessOrEqual : F_LessOrEqual; case GE: return unorderedIsTrue ? F_UnorderedGreaterOrEqual : F_GreaterOrEqual; case GT: return unorderedIsTrue ? F_UnorderedOrGreater : F_Greater; } throw GraalError.shouldNotReachHere("Unkown condition: " + cond); } } }