/*
 * Copyright (c) 2003, 2005, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.management;

import java.lang.management.ThreadMXBean;

import java.lang.management.ThreadInfo;
import java.lang.management.LockInfo;
import java.lang.management.MonitorInfo;
import java.util.Map;
import java.util.HashMap;

Implementation class for the thread subsystem. Standard and committed hotspot-specific metrics if any. ManagementFactory.getThreadMXBean() returns an instance of this class.
/** * Implementation class for the thread subsystem. * Standard and committed hotspot-specific metrics if any. * * ManagementFactory.getThreadMXBean() returns an instance * of this class. */
class ThreadImpl implements ThreadMXBean { private final VMManagement jvm; // default for thread contention monitoring is disabled. private boolean contentionMonitoringEnabled = false; private boolean cpuTimeEnabled;
Constructor of ThreadImpl class.
/** * Constructor of ThreadImpl class. */
ThreadImpl(VMManagement vm) { this.jvm = vm; this.cpuTimeEnabled = jvm.isThreadCpuTimeEnabled(); } public int getThreadCount() { return jvm.getLiveThreadCount(); } public int getPeakThreadCount() { return jvm.getPeakThreadCount(); } public long getTotalStartedThreadCount() { return jvm.getTotalThreadCount(); } public int getDaemonThreadCount() { return jvm.getDaemonThreadCount(); } public boolean isThreadContentionMonitoringSupported() { return jvm.isThreadContentionMonitoringSupported(); } public synchronized boolean isThreadContentionMonitoringEnabled() { if (!isThreadContentionMonitoringSupported()) { throw new UnsupportedOperationException( "Thread contention monitoring is not supported."); } return contentionMonitoringEnabled; } public boolean isThreadCpuTimeSupported() { return jvm.isOtherThreadCpuTimeSupported(); } public boolean isCurrentThreadCpuTimeSupported() { return jvm.isCurrentThreadCpuTimeSupported(); } public boolean isThreadCpuTimeEnabled() { if (!isThreadCpuTimeSupported() && !isCurrentThreadCpuTimeSupported()) { throw new UnsupportedOperationException( "Thread CPU time measurement is not supported"); } return cpuTimeEnabled; } public long[] getAllThreadIds() { ManagementFactory.checkMonitorAccess(); Thread[] threads = getThreads(); int length = threads.length; long[] ids = new long[length]; for (int i = 0; i < length; i++) { Thread t = threads[i]; ids[i] = t.getId(); } return ids; } public ThreadInfo getThreadInfo(long id) { if (id <= 0) { throw new IllegalArgumentException( "Invalid thread ID parameter: " + id); } long[] ids = new long[1]; ids[0] = id; final ThreadInfo[] infos = getThreadInfo(ids, 0); return infos[0]; } public ThreadInfo getThreadInfo(long id, int maxDepth) { if (id <= 0) { throw new IllegalArgumentException( "Invalid thread ID parameter: " + id); } if (maxDepth < 0) { throw new IllegalArgumentException( "Invalid maxDepth parameter: " + maxDepth); } long[] ids = new long[1]; ids[0] = id; final ThreadInfo[] infos = getThreadInfo(ids, maxDepth); return infos[0]; } public ThreadInfo[] getThreadInfo(long[] ids) { return getThreadInfo(ids, 0); } public ThreadInfo[] getThreadInfo(long[] ids, int maxDepth) { if (ids == null) { throw new NullPointerException("Null ids parameter."); } if (maxDepth < 0) { throw new IllegalArgumentException( "Invalid maxDepth parameter: " + maxDepth); } ManagementFactory.checkMonitorAccess(); ThreadInfo[] infos = new ThreadInfo[ids.length]; if (maxDepth == Integer.MAX_VALUE) { getThreadInfo0(ids, -1, infos); } else { getThreadInfo0(ids, maxDepth, infos); } return infos; } public void setThreadContentionMonitoringEnabled(boolean enable) { if (!isThreadContentionMonitoringSupported()) { throw new UnsupportedOperationException( "Thread contention monitoring is not supported"); } ManagementFactory.checkControlAccess(); synchronized (this) { if (contentionMonitoringEnabled != enable) { if (enable) { // if reeabled, reset contention time statistics // for all threads resetContentionTimes0(0); } // update the VM of the state change setThreadContentionMonitoringEnabled0(enable); contentionMonitoringEnabled = enable; } } } public long getCurrentThreadCpuTime() { // check if Thread CPU time measurement is supported. if (!isCurrentThreadCpuTimeSupported()) { throw new UnsupportedOperationException( "Current thread CPU time measurement is not supported."); } if (!isThreadCpuTimeEnabled()) { return -1; } return getThreadTotalCpuTime0(0); } public long getThreadCpuTime(long id) { // check if Thread CPU time measurement is supported. if (!isThreadCpuTimeSupported() && !isCurrentThreadCpuTimeSupported()) { throw new UnsupportedOperationException( "Thread CPU Time Measurement is not supported."); } if (!isThreadCpuTimeSupported()) { // support current thread only if (id != Thread.currentThread().getId()) { throw new UnsupportedOperationException( "Thread CPU Time Measurement is only supported" + " for the current thread."); } } if (id <= 0) { throw new IllegalArgumentException( "Invalid thread ID parameter: " + id); } if (!isThreadCpuTimeEnabled()) { return -1; } if (id == Thread.currentThread().getId()) { // current thread return getThreadTotalCpuTime0(0); } else { return getThreadTotalCpuTime0(id); } } public long getCurrentThreadUserTime() { // check if Thread CPU time measurement is supported. if (!isCurrentThreadCpuTimeSupported()) { throw new UnsupportedOperationException( "Current thread CPU time measurement is not supported."); } if (!isThreadCpuTimeEnabled()) { return -1; } return getThreadUserCpuTime0(0); } public long getThreadUserTime(long id) { // check if Thread CPU time measurement is supported. if (!isThreadCpuTimeSupported() && !isCurrentThreadCpuTimeSupported()) { throw new UnsupportedOperationException( "Thread CPU time measurement is not supported."); } if (!isThreadCpuTimeSupported()) { // support current thread only if (id != Thread.currentThread().getId()) { throw new UnsupportedOperationException( "Thread CPU time measurement is only supported" + " for the current thread."); } } if (id <= 0) { throw new IllegalArgumentException( "Invalid thread ID parameter: " + id); } if (!isThreadCpuTimeEnabled()) { return -1; } if (id == Thread.currentThread().getId()) { // current thread return getThreadUserCpuTime0(0); } else { return getThreadUserCpuTime0(id); } } public void setThreadCpuTimeEnabled(boolean enable) { if (!isThreadCpuTimeSupported() && !isCurrentThreadCpuTimeSupported()) { throw new UnsupportedOperationException( "Thread CPU time measurement is not supported"); } ManagementFactory.checkControlAccess(); synchronized (this) { if (cpuTimeEnabled != enable) { // update VM of the state change setThreadCpuTimeEnabled0(enable); cpuTimeEnabled = enable; } } } public long[] findMonitorDeadlockedThreads() { ManagementFactory.checkMonitorAccess(); Thread[] threads = findMonitorDeadlockedThreads0(); if (threads == null) { return null; } long[] ids = new long[threads.length]; for (int i = 0; i < threads.length; i++) { Thread t = threads[i]; ids[i] = t.getId(); } return ids; } public long[] findDeadlockedThreads() { if (!isSynchronizerUsageSupported()) { throw new UnsupportedOperationException( "Monitoring of Synchronizer Usage is not supported."); } ManagementFactory.checkMonitorAccess(); Thread[] threads = findDeadlockedThreads0(); if (threads == null) { return null; } long[] ids = new long[threads.length]; for (int i = 0; i < threads.length; i++) { Thread t = threads[i]; ids[i] = t.getId(); } return ids; } public void resetPeakThreadCount() { ManagementFactory.checkControlAccess(); resetPeakThreadCount0(); } public boolean isObjectMonitorUsageSupported() { return jvm.isObjectMonitorUsageSupported(); } public boolean isSynchronizerUsageSupported() { return jvm.isSynchronizerUsageSupported(); } public ThreadInfo[] getThreadInfo(long[] ids, boolean lockedMonitors, boolean lockedSynchronizers) { if (ids == null) { throw new NullPointerException("Null ids parameter."); } if (lockedMonitors && !isObjectMonitorUsageSupported()) { throw new UnsupportedOperationException( "Monitoring of Object Monitor Usage is not supported."); } if (lockedSynchronizers && !isSynchronizerUsageSupported()) { throw new UnsupportedOperationException( "Monitoring of Synchronizer Usage is not supported."); } ManagementFactory.checkMonitorAccess(); return dumpThreads0(ids, lockedMonitors, lockedSynchronizers); } public ThreadInfo[] dumpAllThreads(boolean lockedMonitors, boolean lockedSynchronizers) { if (lockedMonitors && !isObjectMonitorUsageSupported()) { throw new UnsupportedOperationException( "Monitoring of Object Monitor Usage is not supported."); } if (lockedSynchronizers && !isSynchronizerUsageSupported()) { throw new UnsupportedOperationException( "Monitoring of Synchronizer Usage is not supported."); } ManagementFactory.checkMonitorAccess(); return dumpThreads0(null, lockedMonitors, lockedSynchronizers); } // VM support where maxDepth == -1 to request entire stack dump private static native Thread[] getThreads(); private static native void getThreadInfo0(long[] ids, int maxDepth, ThreadInfo[] result); private static native long getThreadTotalCpuTime0(long id); private static native long getThreadUserCpuTime0(long id); private static native void setThreadCpuTimeEnabled0(boolean enable); private static native void setThreadContentionMonitoringEnabled0(boolean enable); private static native Thread[] findMonitorDeadlockedThreads0(); private static native Thread[] findDeadlockedThreads0(); private static native void resetPeakThreadCount0(); private static native ThreadInfo[] dumpThreads0(long[] ids, boolean lockedMonitors, boolean lockedSynchronizers); // tid == 0 to reset contention times for all threads private static native void resetContentionTimes0(long tid); }