/*
 * Copyright (c) 2013, 2016, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */



package org.graalvm.compiler.asm.aarch64;

import static org.graalvm.compiler.asm.aarch64.AArch64Address.AddressingMode.BASE_REGISTER_ONLY;
import static org.graalvm.compiler.asm.aarch64.AArch64Address.AddressingMode.EXTENDED_REGISTER_OFFSET;
import static org.graalvm.compiler.asm.aarch64.AArch64Address.AddressingMode.IMMEDIATE_SCALED;
import static org.graalvm.compiler.asm.aarch64.AArch64Address.AddressingMode.IMMEDIATE_UNSCALED;
import static org.graalvm.compiler.asm.aarch64.AArch64Address.AddressingMode.REGISTER_OFFSET;
import static org.graalvm.compiler.asm.aarch64.AArch64MacroAssembler.AddressGenerationPlan.WorkPlan.ADD_TO_BASE;
import static org.graalvm.compiler.asm.aarch64.AArch64MacroAssembler.AddressGenerationPlan.WorkPlan.ADD_TO_INDEX;
import static org.graalvm.compiler.asm.aarch64.AArch64MacroAssembler.AddressGenerationPlan.WorkPlan.NO_WORK;
import static jdk.vm.ci.aarch64.AArch64.CPU;
import static jdk.vm.ci.aarch64.AArch64.r8;
import static jdk.vm.ci.aarch64.AArch64.r9;
import static jdk.vm.ci.aarch64.AArch64.sp;
import static jdk.vm.ci.aarch64.AArch64.zr;

import org.graalvm.compiler.asm.Label;
import org.graalvm.compiler.core.common.NumUtil;
import org.graalvm.compiler.debug.GraalError;

import jdk.vm.ci.aarch64.AArch64;
import jdk.vm.ci.code.Register;
import jdk.vm.ci.code.TargetDescription;

public class AArch64MacroAssembler extends AArch64Assembler {

    private final ScratchRegister[] scratchRegister = new ScratchRegister[]{new ScratchRegister(r8), new ScratchRegister(r9)};

    // Points to the next free scratch register
    private int nextFreeScratchRegister = 0;

    public AArch64MacroAssembler(TargetDescription target) {
        super(target);
    }

    public class ScratchRegister implements AutoCloseable {
        private final Register register;

        public ScratchRegister(Register register) {
            this.register = register;
        }

        public Register getRegister() {
            return register;
        }

        @Override
        public void close() {
            assert nextFreeScratchRegister > 0 : "Close called too often";
            nextFreeScratchRegister--;
        }
    }

    public ScratchRegister getScratchRegister() {
        return scratchRegister[nextFreeScratchRegister++];
    }

    
Specifies what actions have to be taken to turn an arbitrary address of the form base + displacement [+ index [<< scale]] into a valid AArch64Address.
/** * Specifies what actions have to be taken to turn an arbitrary address of the form * {@code base + displacement [+ index [<< scale]]} into a valid AArch64Address. */
public static class AddressGenerationPlan { public final WorkPlan workPlan; public final AArch64Address.AddressingMode addressingMode; public final boolean needsScratch; public enum WorkPlan {
Can be used as-is without extra work.
/** * Can be used as-is without extra work. */
NO_WORK,
Add scaled displacement to index register.
/** * Add scaled displacement to index register. */
ADD_TO_INDEX,
Add unscaled displacement to base register.
/** * Add unscaled displacement to base register. */
ADD_TO_BASE, }
Params:
  • workPlan – Work necessary to generate a valid address.
  • addressingMode – Addressing mode of generated address.
  • needsScratch – True if generating address needs a scatch register, false otherwise.
/** * @param workPlan Work necessary to generate a valid address. * @param addressingMode Addressing mode of generated address. * @param needsScratch True if generating address needs a scatch register, false otherwise. */
public AddressGenerationPlan(WorkPlan workPlan, AArch64Address.AddressingMode addressingMode, boolean needsScratch) { this.workPlan = workPlan; this.addressingMode = addressingMode; this.needsScratch = needsScratch; } }
Generates an addressplan for an address of the form base + displacement [+ index [<< log2(transferSize)]] with the index register and scaling being optional.
Params:
  • displacement – an arbitrary displacement.
  • hasIndexRegister – true if the address uses an index register, false otherwise. non null
  • transferSize – the memory transfer size in bytes. The log2 of this specifies how much the index register is scaled. If 0 no scaling is assumed. Can be 0, 1, 2, 4 or 8.
Returns:AddressGenerationPlan that specifies the actions necessary to generate a valid AArch64Address for the given parameters.
/** * Generates an addressplan for an address of the form * {@code base + displacement [+ index [<< log2(transferSize)]]} with the index register and * scaling being optional. * * @param displacement an arbitrary displacement. * @param hasIndexRegister true if the address uses an index register, false otherwise. non null * @param transferSize the memory transfer size in bytes. The log2 of this specifies how much * the index register is scaled. If 0 no scaling is assumed. Can be 0, 1, 2, 4 or 8. * @return AddressGenerationPlan that specifies the actions necessary to generate a valid * AArch64Address for the given parameters. */
public static AddressGenerationPlan generateAddressPlan(long displacement, boolean hasIndexRegister, int transferSize) { assert transferSize == 0 || transferSize == 1 || transferSize == 2 || transferSize == 4 || transferSize == 8; boolean indexScaled = transferSize != 0; int log2Scale = NumUtil.log2Ceil(transferSize); long scaledDisplacement = displacement >> log2Scale; boolean displacementScalable = indexScaled && (displacement & (transferSize - 1)) == 0; if (displacement == 0) { // register offset without any work beforehand. return new AddressGenerationPlan(NO_WORK, REGISTER_OFFSET, false); } else { if (hasIndexRegister) { if (displacementScalable) { boolean needsScratch = !isArithmeticImmediate(scaledDisplacement); return new AddressGenerationPlan(ADD_TO_INDEX, REGISTER_OFFSET, needsScratch); } else { boolean needsScratch = !isArithmeticImmediate(displacement); return new AddressGenerationPlan(ADD_TO_BASE, REGISTER_OFFSET, needsScratch); } } else { if (displacementScalable && NumUtil.isUnsignedNbit(12, scaledDisplacement)) { return new AddressGenerationPlan(NO_WORK, IMMEDIATE_SCALED, false); } else if (NumUtil.isSignedNbit(9, displacement)) { return new AddressGenerationPlan(NO_WORK, IMMEDIATE_UNSCALED, false); } else { boolean needsScratch = !isArithmeticImmediate(displacement); return new AddressGenerationPlan(ADD_TO_BASE, REGISTER_OFFSET, needsScratch); } } } }
Returns an AArch64Address pointing to base + displacement + index << log2(transferSize).
Params:
  • base – general purpose register. May not be null or the zero register.
  • displacement – arbitrary displacement added to base.
  • index – general purpose register. May not be null or the stack pointer.
  • signExtendIndex – if true consider index register a word register that should be sign-extended before being added.
  • transferSize – the memory transfer size in bytes. The log2 of this specifies how much the index register is scaled. If 0 no scaling is assumed. Can be 0, 1, 2, 4 or 8.
  • additionalReg – additional register used either as a scratch register or as part of the final address, depending on whether allowOverwrite is true or not. May not be null or stackpointer.
  • allowOverwrite – if true allows to change value of base or index register to generate address.
Returns:AArch64Address pointing to memory at base + displacement + index << log2(transferSize).
/** * Returns an AArch64Address pointing to * {@code base + displacement + index << log2(transferSize)}. * * @param base general purpose register. May not be null or the zero register. * @param displacement arbitrary displacement added to base. * @param index general purpose register. May not be null or the stack pointer. * @param signExtendIndex if true consider index register a word register that should be * sign-extended before being added. * @param transferSize the memory transfer size in bytes. The log2 of this specifies how much * the index register is scaled. If 0 no scaling is assumed. Can be 0, 1, 2, 4 or 8. * @param additionalReg additional register used either as a scratch register or as part of the * final address, depending on whether allowOverwrite is true or not. May not be null * or stackpointer. * @param allowOverwrite if true allows to change value of base or index register to generate * address. * @return AArch64Address pointing to memory at * {@code base + displacement + index << log2(transferSize)}. */
public AArch64Address makeAddress(Register base, long displacement, Register index, boolean signExtendIndex, int transferSize, Register additionalReg, boolean allowOverwrite) { AddressGenerationPlan plan = generateAddressPlan(displacement, !index.equals(zr), transferSize); assert allowOverwrite || !zr.equals(additionalReg) || plan.workPlan == NO_WORK; assert !plan.needsScratch || !zr.equals(additionalReg); int log2Scale = NumUtil.log2Ceil(transferSize); long scaledDisplacement = displacement >> log2Scale; Register newIndex = index; Register newBase = base; int immediate; switch (plan.workPlan) { case NO_WORK: if (plan.addressingMode == IMMEDIATE_SCALED) { immediate = (int) scaledDisplacement; } else { immediate = (int) displacement; } break; case ADD_TO_INDEX: newIndex = allowOverwrite ? index : additionalReg; assert !newIndex.equals(sp) && !newIndex.equals(zr); if (plan.needsScratch) { mov(additionalReg, scaledDisplacement); add(signExtendIndex ? 32 : 64, newIndex, index, additionalReg); } else { add(signExtendIndex ? 32 : 64, newIndex, index, (int) scaledDisplacement); } immediate = 0; break; case ADD_TO_BASE: newBase = allowOverwrite ? base : additionalReg; assert !newBase.equals(sp) && !newBase.equals(zr); if (plan.needsScratch) { mov(additionalReg, displacement); add(64, newBase, base, additionalReg); } else { add(64, newBase, base, (int) displacement); } immediate = 0; break; default: throw GraalError.shouldNotReachHere(); } AArch64Address.AddressingMode addressingMode = plan.addressingMode; ExtendType extendType = null; if (addressingMode == REGISTER_OFFSET) { if (newIndex.equals(zr)) { addressingMode = BASE_REGISTER_ONLY; } else if (signExtendIndex) { addressingMode = EXTENDED_REGISTER_OFFSET; extendType = ExtendType.SXTW; } } return AArch64Address.createAddress(addressingMode, newBase, newIndex, immediate, transferSize != 0, extendType); }
Returns an AArch64Address pointing to base + displacement. Specifies the memory transfer size to allow some optimizations when building the address.
Params:
  • base – general purpose register. May not be null or the zero register.
  • displacement – arbitrary displacement added to base.
  • transferSize – the memory transfer size in bytes.
  • additionalReg – additional register used either as a scratch register or as part of the final address, depending on whether allowOverwrite is true or not. May not be null, zero register or stackpointer.
  • allowOverwrite – if true allows to change value of base or index register to generate address.
Returns:AArch64Address pointing to memory at base + displacement.
/** * Returns an AArch64Address pointing to {@code base + displacement}. Specifies the memory * transfer size to allow some optimizations when building the address. * * @param base general purpose register. May not be null or the zero register. * @param displacement arbitrary displacement added to base. * @param transferSize the memory transfer size in bytes. * @param additionalReg additional register used either as a scratch register or as part of the * final address, depending on whether allowOverwrite is true or not. May not be * null, zero register or stackpointer. * @param allowOverwrite if true allows to change value of base or index register to generate * address. * @return AArch64Address pointing to memory at {@code base + displacement}. */
public AArch64Address makeAddress(Register base, long displacement, Register additionalReg, int transferSize, boolean allowOverwrite) { assert additionalReg.getRegisterCategory().equals(CPU); return makeAddress(base, displacement, zr, /* sign-extend */false, transferSize, additionalReg, allowOverwrite); }
Returns an AArch64Address pointing to base + displacement. Fails if address cannot be represented without overwriting base register or using a scratch register.
Params:
  • base – general purpose register. May not be null or the zero register.
  • displacement – arbitrary displacement added to base.
  • transferSize – the memory transfer size in bytes. The log2 of this specifies how much the index register is scaled. If 0 no scaling is assumed. Can be 0, 1, 2, 4 or 8.
Returns:AArch64Address pointing to memory at base + displacement.
/** * Returns an AArch64Address pointing to {@code base + displacement}. Fails if address cannot be * represented without overwriting base register or using a scratch register. * * @param base general purpose register. May not be null or the zero register. * @param displacement arbitrary displacement added to base. * @param transferSize the memory transfer size in bytes. The log2 of this specifies how much * the index register is scaled. If 0 no scaling is assumed. Can be 0, 1, 2, 4 or 8. * @return AArch64Address pointing to memory at {@code base + displacement}. */
public AArch64Address makeAddress(Register base, long displacement, int transferSize) { return makeAddress(base, displacement, zr, /* signExtend */false, transferSize, zr, /* allowOverwrite */false); }
Loads memory address into register.
Params:
  • dst – general purpose register. May not be null, zero-register or stackpointer.
  • address – address whose value is loaded into dst. May not be null, POST_INDEXED or IMMEDIATE_PRE_INDEXED
  • transferSize – the memory transfer size in bytes. The log2 of this specifies how much the index register is scaled. Can be 1, 2, 4 or 8.
/** * Loads memory address into register. * * @param dst general purpose register. May not be null, zero-register or stackpointer. * @param address address whose value is loaded into dst. May not be null, * {@link org.graalvm.compiler.asm.aarch64.AArch64Address.AddressingMode#IMMEDIATE_POST_INDEXED * POST_INDEXED} or * {@link org.graalvm.compiler.asm.aarch64.AArch64Address.AddressingMode#IMMEDIATE_PRE_INDEXED * IMMEDIATE_PRE_INDEXED} * @param transferSize the memory transfer size in bytes. The log2 of this specifies how much * the index register is scaled. Can be 1, 2, 4 or 8. */
public void loadAddress(Register dst, AArch64Address address, int transferSize) { assert transferSize == 1 || transferSize == 2 || transferSize == 4 || transferSize == 8; assert dst.getRegisterCategory().equals(CPU); int shiftAmt = NumUtil.log2Ceil(transferSize); switch (address.getAddressingMode()) { case IMMEDIATE_SCALED: int scaledImmediate = address.getImmediateRaw() << shiftAmt; int lowerBits = scaledImmediate & NumUtil.getNbitNumberInt(12); int higherBits = scaledImmediate & ~NumUtil.getNbitNumberInt(12); boolean firstAdd = true; if (lowerBits != 0) { add(64, dst, address.getBase(), lowerBits); firstAdd = false; } if (higherBits != 0) { Register src = firstAdd ? address.getBase() : dst; add(64, dst, src, higherBits); } break; case IMMEDIATE_UNSCALED: int immediate = address.getImmediateRaw(); add(64, dst, address.getBase(), immediate); break; case REGISTER_OFFSET: add(64, dst, address.getBase(), address.getOffset(), ShiftType.LSL, address.isScaled() ? shiftAmt : 0); break; case EXTENDED_REGISTER_OFFSET: add(64, dst, address.getBase(), address.getOffset(), address.getExtendType(), address.isScaled() ? shiftAmt : 0); break; case PC_LITERAL: { addressOf(dst); break; } case BASE_REGISTER_ONLY: movx(dst, address.getBase()); break; default: throw GraalError.shouldNotReachHere(); } } public void movx(Register dst, Register src) { mov(64, dst, src); } public void mov(int size, Register dst, Register src) { if (dst.equals(sp) || src.equals(sp)) { add(size, dst, src, 0); } else { or(size, dst, zr, src); } }
Generates a 64-bit immediate move code sequence.
Params:
  • dst – general purpose register. May not be null, stackpointer or zero-register.
  • imm –
/** * Generates a 64-bit immediate move code sequence. * * @param dst general purpose register. May not be null, stackpointer or zero-register. * @param imm */
private void mov64(Register dst, long imm) { // We have to move all non zero parts of the immediate in 16-bit chunks boolean firstMove = true; for (int offset = 0; offset < 64; offset += 16) { int chunk = (int) (imm >> offset) & NumUtil.getNbitNumberInt(16); if (chunk == 0) { continue; } if (firstMove) { movz(64, dst, chunk, offset); firstMove = false; } else { movk(64, dst, chunk, offset); } } assert !firstMove; }
Loads immediate into register.
Params:
  • dst – general purpose register. May not be null, zero-register or stackpointer.
  • imm – immediate loaded into register.
/** * Loads immediate into register. * * @param dst general purpose register. May not be null, zero-register or stackpointer. * @param imm immediate loaded into register. */
public void mov(Register dst, long imm) { assert dst.getRegisterCategory().equals(CPU); if (imm == 0L) { movx(dst, zr); } else if (LogicalImmediateTable.isRepresentable(true, imm) != LogicalImmediateTable.Representable.NO) { or(64, dst, zr, imm); } else if (imm >> 32 == -1L && (int) imm < 0 && LogicalImmediateTable.isRepresentable((int) imm) != LogicalImmediateTable.Representable.NO) { // If the higher 32-bit are 1s and the sign bit of the lower 32-bits is set *and* we can // represent the lower 32 bits as a logical immediate we can create the lower 32-bit and // then sign extend // them. This allows us to cover immediates like ~1L with 2 instructions. mov(dst, (int) imm); sxt(64, 32, dst, dst); } else { mov64(dst, imm); } }
Loads immediate into register.
Params:
  • dst – general purpose register. May not be null, zero-register or stackpointer.
  • imm – immediate loaded into register.
/** * Loads immediate into register. * * @param dst general purpose register. May not be null, zero-register or stackpointer. * @param imm immediate loaded into register. */
public void mov(Register dst, int imm) { mov(dst, imm & 0xFFFF_FFFFL); }
Generates a 48-bit immediate move code sequence. The immediate may later be updated by HotSpot. In AArch64 mode the virtual address space is 48-bits in size, so we only need three instructions to create a patchable instruction sequence that can reach anywhere.
Params:
  • dst – general purpose register. May not be null, stackpointer or zero-register.
  • imm –
/** * Generates a 48-bit immediate move code sequence. The immediate may later be updated by * HotSpot. * * In AArch64 mode the virtual address space is 48-bits in size, so we only need three * instructions to create a patchable instruction sequence that can reach anywhere. * * @param dst general purpose register. May not be null, stackpointer or zero-register. * @param imm */
public void movNativeAddress(Register dst, long imm) { assert (imm & 0xFFFF_0000_0000_0000L) == 0; // We have to move all non zero parts of the immediate in 16-bit chunks boolean firstMove = true; for (int offset = 0; offset < 48; offset += 16) { int chunk = (int) (imm >> offset) & NumUtil.getNbitNumberInt(16); if (firstMove) { movz(64, dst, chunk, offset); firstMove = false; } else { movk(64, dst, chunk, offset); } } assert !firstMove; }
Generates a 32-bit immediate move code sequence. The immediate may later be updated by HotSpot.
Params:
  • dst – general purpose register. May not be null, stackpointer or zero-register.
  • imm –
/** * Generates a 32-bit immediate move code sequence. The immediate may later be updated by * HotSpot. * * @param dst general purpose register. May not be null, stackpointer or zero-register. * @param imm */
public void movNarrowAddress(Register dst, long imm) { assert (imm & 0xFFFF_FFFF_0000_0000L) == 0; movz(64, dst, (int) (imm >>> 16), 16); movk(64, dst, (int) (imm & 0xffff), 0); }
Returns:Number of instructions necessary to load immediate into register.
/** * @return Number of instructions necessary to load immediate into register. */
public static int nrInstructionsToMoveImmediate(long imm) { if (imm == 0L || LogicalImmediateTable.isRepresentable(true, imm) != LogicalImmediateTable.Representable.NO) { return 1; } if (imm >> 32 == -1L && (int) imm < 0 && LogicalImmediateTable.isRepresentable((int) imm) != LogicalImmediateTable.Representable.NO) { // If the higher 32-bit are 1s and the sign bit of the lower 32-bits is set *and* we can // represent the lower 32 bits as a logical immediate we can create the lower 32-bit and // then sign extend // them. This allows us to cover immediates like ~1L with 2 instructions. return 2; } int nrInstructions = 0; for (int offset = 0; offset < 64; offset += 16) { int part = (int) (imm >> offset) & NumUtil.getNbitNumberInt(16); if (part != 0) { nrInstructions++; } } return nrInstructions; }
Loads a srcSize value from address into rt sign-extending it if necessary.
Params:
  • targetSize – size of target register in bits. Must be 32 or 64.
  • srcSize – size of memory read in bits. Must be 8, 16 or 32 and smaller or equal to targetSize.
  • rt – general purpose register. May not be null or stackpointer.
  • address – all addressing modes allowed. May not be null.
/** * Loads a srcSize value from address into rt sign-extending it if necessary. * * @param targetSize size of target register in bits. Must be 32 or 64. * @param srcSize size of memory read in bits. Must be 8, 16 or 32 and smaller or equal to * targetSize. * @param rt general purpose register. May not be null or stackpointer. * @param address all addressing modes allowed. May not be null. */
@Override public void ldrs(int targetSize, int srcSize, Register rt, AArch64Address address) { assert targetSize == 32 || targetSize == 64; assert srcSize <= targetSize; if (targetSize == srcSize) { super.ldr(srcSize, rt, address); } else { super.ldrs(targetSize, srcSize, rt, address); } }
Loads a srcSize value from address into rt zero-extending it if necessary.
Params:
  • srcSize – size of memory read in bits. Must be 8, 16 or 32 and smaller or equal to targetSize.
  • rt – general purpose register. May not be null or stackpointer.
  • address – all addressing modes allowed. May not be null.
/** * Loads a srcSize value from address into rt zero-extending it if necessary. * * @param srcSize size of memory read in bits. Must be 8, 16 or 32 and smaller or equal to * targetSize. * @param rt general purpose register. May not be null or stackpointer. * @param address all addressing modes allowed. May not be null. */
@Override public void ldr(int srcSize, Register rt, AArch64Address address) { super.ldr(srcSize, rt, address); }
Conditional move. dst = src1 if condition else src2.
Params:
  • size – register size. Has to be 32 or 64.
  • result – general purpose register. May not be null or the stackpointer.
  • trueValue – general purpose register. May not be null or the stackpointer.
  • falseValue – general purpose register. May not be null or the stackpointer.
  • cond – any condition flag. May not be null.
/** * Conditional move. dst = src1 if condition else src2. * * @param size register size. Has to be 32 or 64. * @param result general purpose register. May not be null or the stackpointer. * @param trueValue general purpose register. May not be null or the stackpointer. * @param falseValue general purpose register. May not be null or the stackpointer. * @param cond any condition flag. May not be null. */
public void cmov(int size, Register result, Register trueValue, Register falseValue, ConditionFlag cond) { super.csel(size, result, trueValue, falseValue, cond); }
Conditional set. dst = 1 if condition else 0.
Params:
  • dst – general purpose register. May not be null or stackpointer.
  • condition – any condition. May not be null.
/** * Conditional set. dst = 1 if condition else 0. * * @param dst general purpose register. May not be null or stackpointer. * @param condition any condition. May not be null. */
public void cset(Register dst, ConditionFlag condition) { super.csinc(32, dst, zr, zr, condition.negate()); }
dst = src1 + src2.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null.
  • src1 – general purpose register. May not be null.
  • src2 – general purpose register. May not be null or stackpointer.
/** * dst = src1 + src2. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null. * @param src1 general purpose register. May not be null. * @param src2 general purpose register. May not be null or stackpointer. */
public void add(int size, Register dst, Register src1, Register src2) { if (dst.equals(sp) || src1.equals(sp)) { super.add(size, dst, src1, src2, ExtendType.UXTX, 0); } else { super.add(size, dst, src1, src2, ShiftType.LSL, 0); } }
dst = src1 + src2 and sets condition flags.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null.
  • src1 – general purpose register. May not be null.
  • src2 – general purpose register. May not be null or stackpointer.
/** * dst = src1 + src2 and sets condition flags. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null. * @param src1 general purpose register. May not be null. * @param src2 general purpose register. May not be null or stackpointer. */
public void adds(int size, Register dst, Register src1, Register src2) { if (dst.equals(sp) || src1.equals(sp)) { super.adds(size, dst, src1, src2, ExtendType.UXTX, 0); } else { super.adds(size, dst, src1, src2, ShiftType.LSL, 0); } }
dst = src1 - src2 and sets condition flags.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null.
  • src1 – general purpose register. May not be null.
  • src2 – general purpose register. May not be null or stackpointer.
/** * dst = src1 - src2 and sets condition flags. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null. * @param src1 general purpose register. May not be null. * @param src2 general purpose register. May not be null or stackpointer. */
public void subs(int size, Register dst, Register src1, Register src2) { if (dst.equals(sp) || src1.equals(sp)) { super.subs(size, dst, src1, src2, ExtendType.UXTX, 0); } else { super.subs(size, dst, src1, src2, ShiftType.LSL, 0); } }
dst = src1 - src2.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null.
  • src1 – general purpose register. May not be null.
  • src2 – general purpose register. May not be null or stackpointer.
/** * dst = src1 - src2. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null. * @param src1 general purpose register. May not be null. * @param src2 general purpose register. May not be null or stackpointer. */
public void sub(int size, Register dst, Register src1, Register src2) { if (dst.equals(sp) || src1.equals(sp)) { super.sub(size, dst, src1, src2, ExtendType.UXTX, 0); } else { super.sub(size, dst, src1, src2, ShiftType.LSL, 0); } }
dst = src1 + shiftType(src2, shiftAmt & (size - 1)).
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or stackpointer.
  • src1 – general purpose register. May not be null or stackpointer.
  • src2 – general purpose register. May not be null or stackpointer.
  • shiftType – any type but ROR.
  • shiftAmt – arbitrary shift amount.
/** * dst = src1 + shiftType(src2, shiftAmt & (size - 1)). * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or stackpointer. * @param src1 general purpose register. May not be null or stackpointer. * @param src2 general purpose register. May not be null or stackpointer. * @param shiftType any type but ROR. * @param shiftAmt arbitrary shift amount. */
@Override public void add(int size, Register dst, Register src1, Register src2, ShiftType shiftType, int shiftAmt) { int shift = clampShiftAmt(size, shiftAmt); super.add(size, dst, src1, src2, shiftType, shift); }
dst = src1 + shiftType(src2, shiftAmt & (size-1)) and sets condition flags.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or stackpointer.
  • src1 – general purpose register. May not be null or stackpointer.
  • src2 – general purpose register. May not be null or stackpointer.
  • shiftType – any type but ROR.
  • shiftAmt – arbitrary shift amount.
/** * dst = src1 + shiftType(src2, shiftAmt & (size-1)) and sets condition flags. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or stackpointer. * @param src1 general purpose register. May not be null or stackpointer. * @param src2 general purpose register. May not be null or stackpointer. * @param shiftType any type but ROR. * @param shiftAmt arbitrary shift amount. */
@Override public void sub(int size, Register dst, Register src1, Register src2, ShiftType shiftType, int shiftAmt) { int shift = clampShiftAmt(size, shiftAmt); super.sub(size, dst, src1, src2, shiftType, shift); }
dst = -src1.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or stackpointer.
  • src – general purpose register. May not be null or stackpointer.
/** * dst = -src1. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or stackpointer. * @param src general purpose register. May not be null or stackpointer. */
public void neg(int size, Register dst, Register src) { sub(size, dst, zr, src); }
dst = src + immediate.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or zero-register.
  • src – general purpose register. May not be null or zero-register.
  • immediate – 32-bit signed int
/** * dst = src + immediate. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or zero-register. * @param src general purpose register. May not be null or zero-register. * @param immediate 32-bit signed int */
@Override public void add(int size, Register dst, Register src, int immediate) { assert (!dst.equals(zr) && !src.equals(zr)); if (immediate < 0) { sub(size, dst, src, -immediate); } else if (isAimm(immediate)) { if (!(dst.equals(src) && immediate == 0)) { super.add(size, dst, src, immediate); } } else if (immediate >= -(1 << 24) && immediate < (1 << 24)) { super.add(size, dst, src, immediate & -(1 << 12)); super.add(size, dst, dst, immediate & ((1 << 12) - 1)); } else { assert !dst.equals(src); mov(dst, immediate); add(size, src, dst, dst); } }
dst = src + immediate.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or zero-register.
  • src – general purpose register. May not be null or zero-register.
  • immediate – 64-bit signed int
/** * dst = src + immediate. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or zero-register. * @param src general purpose register. May not be null or zero-register. * @param immediate 64-bit signed int */
public void add(int size, Register dst, Register src, long immediate) { if (NumUtil.isInt(immediate)) { add(size, dst, src, (int) immediate); } else { assert (!dst.equals(zr) && !src.equals(zr)); assert !dst.equals(src); assert size == 64; mov(dst, immediate); add(size, src, dst, dst); } }
dst = src + aimm and sets condition flags.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or stackpointer.
  • src – general purpose register. May not be null or zero-register.
  • immediate – arithmetic immediate.
/** * dst = src + aimm and sets condition flags. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or stackpointer. * @param src general purpose register. May not be null or zero-register. * @param immediate arithmetic immediate. */
@Override public void adds(int size, Register dst, Register src, int immediate) { assert (!dst.equals(sp) && !src.equals(zr)); if (immediate < 0) { subs(size, dst, src, -immediate); } else if (!(dst.equals(src) && immediate == 0)) { super.adds(size, dst, src, immediate); } }
dst = src - immediate.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or zero-register.
  • src – general purpose register. May not be null or zero-register.
  • immediate – 32-bit signed int
/** * dst = src - immediate. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or zero-register. * @param src general purpose register. May not be null or zero-register. * @param immediate 32-bit signed int */
@Override public void sub(int size, Register dst, Register src, int immediate) { assert (!dst.equals(zr) && !src.equals(zr)); if (immediate < 0) { add(size, dst, src, -immediate); } else if (isAimm(immediate)) { if (!(dst.equals(src) && immediate == 0)) { super.sub(size, dst, src, immediate); } } else if (immediate >= -(1 << 24) && immediate < (1 << 24)) { super.sub(size, dst, src, immediate & -(1 << 12)); super.sub(size, dst, dst, immediate & ((1 << 12) - 1)); } else { assert !dst.equals(src); mov(dst, immediate); sub(size, src, dst, dst); } }
dst = src - aimm and sets condition flags.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or stackpointer.
  • src – general purpose register. May not be null or zero-register.
  • immediate – arithmetic immediate.
/** * dst = src - aimm and sets condition flags. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or stackpointer. * @param src general purpose register. May not be null or zero-register. * @param immediate arithmetic immediate. */
@Override public void subs(int size, Register dst, Register src, int immediate) { assert (!dst.equals(sp) && !src.equals(zr)); if (immediate < 0) { adds(size, dst, src, -immediate); } else if (!dst.equals(src) || immediate != 0) { super.subs(size, dst, src, immediate); } }
dst = src1 * src2.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or the stackpointer.
  • src1 – general purpose register. May not be null or the stackpointer.
  • src2 – general purpose register. May not be null or the stackpointer.
/** * dst = src1 * src2. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or the stackpointer. * @param src1 general purpose register. May not be null or the stackpointer. * @param src2 general purpose register. May not be null or the stackpointer. */
public void mul(int size, Register dst, Register src1, Register src2) { super.madd(size, dst, src1, src2, zr); }
unsigned multiply high. dst = (src1 * src2) >> size
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or the stackpointer.
  • src1 – general purpose register. May not be null or the stackpointer.
  • src2 – general purpose register. May not be null or the stackpointer.
/** * unsigned multiply high. dst = (src1 * src2) >> size * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or the stackpointer. * @param src1 general purpose register. May not be null or the stackpointer. * @param src2 general purpose register. May not be null or the stackpointer. */
public void umulh(int size, Register dst, Register src1, Register src2) { assert (!dst.equals(sp) && !src1.equals(sp) && !src2.equals(sp)); assert size == 32 || size == 64; if (size == 64) { super.umulh(dst, src1, src2); } else { // xDst = wSrc1 * wSrc2 super.umaddl(dst, src1, src2, zr); // xDst = xDst >> 32 lshr(64, dst, dst, 32); } }
signed multiply high. dst = (src1 * src2) >> size
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or the stackpointer.
  • src1 – general purpose register. May not be null or the stackpointer.
  • src2 – general purpose register. May not be null or the stackpointer.
/** * signed multiply high. dst = (src1 * src2) >> size * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or the stackpointer. * @param src1 general purpose register. May not be null or the stackpointer. * @param src2 general purpose register. May not be null or the stackpointer. */
public void smulh(int size, Register dst, Register src1, Register src2) { assert (!dst.equals(sp) && !src1.equals(sp) && !src2.equals(sp)); assert size == 32 || size == 64; if (size == 64) { super.smulh(dst, src1, src2); } else { // xDst = wSrc1 * wSrc2 super.smaddl(dst, src1, src2, zr); // xDst = xDst >> 32 lshr(64, dst, dst, 32); } }
dst = src1 % src2. Signed.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or the stackpointer.
  • n – numerator. General purpose register. May not be null or the stackpointer.
  • d – denominator. General purpose register. Divisor May not be null or the stackpointer.
/** * dst = src1 % src2. Signed. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or the stackpointer. * @param n numerator. General purpose register. May not be null or the stackpointer. * @param d denominator. General purpose register. Divisor May not be null or the stackpointer. */
public void rem(int size, Register dst, Register n, Register d) { assert (!dst.equals(sp) && !n.equals(sp) && !d.equals(sp)); // There is no irem or similar instruction. Instead we use the relation: // n % d = n - Floor(n / d) * d if nd >= 0 // n % d = n - Ceil(n / d) * d else // Which is equivalent to n - TruncatingDivision(n, d) * d super.sdiv(size, dst, n, d); super.msub(size, dst, dst, d, n); }
dst = src1 % src2. Unsigned.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or the stackpointer.
  • n – numerator. General purpose register. May not be null or the stackpointer.
  • d – denominator. General purpose register. Divisor May not be null or the stackpointer.
/** * dst = src1 % src2. Unsigned. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or the stackpointer. * @param n numerator. General purpose register. May not be null or the stackpointer. * @param d denominator. General purpose register. Divisor May not be null or the stackpointer. */
public void urem(int size, Register dst, Register n, Register d) { // There is no irem or similar instruction. Instead we use the relation: // n % d = n - Floor(n / d) * d // Which is equivalent to n - TruncatingDivision(n, d) * d super.udiv(size, dst, n, d); super.msub(size, dst, dst, d, n); }
Add/subtract instruction encoding supports 12-bit immediate values.
Params:
  • imm – immediate value to be tested.
Returns:true if immediate can be used directly for arithmetic instructions (add/sub), false otherwise.
/** * Add/subtract instruction encoding supports 12-bit immediate values. * * @param imm immediate value to be tested. * @return true if immediate can be used directly for arithmetic instructions (add/sub), false * otherwise. */
public static boolean isArithmeticImmediate(long imm) { // If we have a negative immediate we just use the opposite operator. I.e.: x - (-5) == x + // 5. return NumUtil.isInt(Math.abs(imm)) && isAimm((int) Math.abs(imm)); }
Compare instructions are add/subtract instructions and so support 12-bit immediate values.
Params:
  • imm – immediate value to be tested.
Returns:true if immediate can be used directly with comparison instructions, false otherwise.
/** * Compare instructions are add/subtract instructions and so support 12-bit immediate values. * * @param imm immediate value to be tested. * @return true if immediate can be used directly with comparison instructions, false otherwise. */
public static boolean isComparisonImmediate(long imm) { return isArithmeticImmediate(imm); }
Move wide immediate instruction encoding supports 16-bit immediate values which can be optionally-shifted by multiples of 16 (i.e. 0, 16, 32, 48).
Returns:true if immediate can be moved directly into a register, false otherwise.
/** * Move wide immediate instruction encoding supports 16-bit immediate values which can be * optionally-shifted by multiples of 16 (i.e. 0, 16, 32, 48). * * @return true if immediate can be moved directly into a register, false otherwise. */
public static boolean isMovableImmediate(long imm) { // // Positions of first, respectively last set bit. // int start = Long.numberOfTrailingZeros(imm); // int end = 64 - Long.numberOfLeadingZeros(imm); // int length = end - start; // if (length > 16) { // return false; // } // // We can shift the necessary part of the immediate (i.e. everything between the first // and // // last set bit) by as much as 16 - length around to arrive at a valid shift amount // int tolerance = 16 - length; // int prevMultiple = NumUtil.roundDown(start, 16); // int nextMultiple = NumUtil.roundUp(start, 16); // return start - prevMultiple <= tolerance || nextMultiple - start <= tolerance; /* * This is a bit optimistic because the constant could also be for an arithmetic instruction * which only supports 12-bits. That case needs to be handled in the backend. */ return NumUtil.isInt(Math.abs(imm)) && NumUtil.isUnsignedNbit(16, (int) Math.abs(imm)); }
dst = src << (shiftAmt & (size - 1)).
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null, stackpointer or zero-register.
  • src – general purpose register. May not be null, stackpointer or zero-register.
  • shiftAmt – amount by which src is shifted.
/** * dst = src << (shiftAmt & (size - 1)). * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null, stackpointer or zero-register. * @param src general purpose register. May not be null, stackpointer or zero-register. * @param shiftAmt amount by which src is shifted. */
public void shl(int size, Register dst, Register src, long shiftAmt) { int shift = clampShiftAmt(size, shiftAmt); super.ubfm(size, dst, src, (size - shift) & (size - 1), size - 1 - shift); }
dst = src1 << (src2 & (size - 1)).
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or stackpointer.
  • src – general purpose register. May not be null or stackpointer.
  • shift – general purpose register. May not be null or stackpointer.
/** * dst = src1 << (src2 & (size - 1)). * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or stackpointer. * @param src general purpose register. May not be null or stackpointer. * @param shift general purpose register. May not be null or stackpointer. */
public void shl(int size, Register dst, Register src, Register shift) { super.lsl(size, dst, src, shift); }
dst = src >>> (shiftAmt & (size - 1)).
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null, stackpointer or zero-register.
  • src – general purpose register. May not be null, stackpointer or zero-register.
  • shiftAmt – amount by which src is shifted.
/** * dst = src >>> (shiftAmt & (size - 1)). * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null, stackpointer or zero-register. * @param src general purpose register. May not be null, stackpointer or zero-register. * @param shiftAmt amount by which src is shifted. */
public void lshr(int size, Register dst, Register src, long shiftAmt) { int shift = clampShiftAmt(size, shiftAmt); super.ubfm(size, dst, src, shift, size - 1); }
dst = src1 >>> (src2 & (size - 1)).
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or stackpointer.
  • src – general purpose register. May not be null or stackpointer.
  • shift – general purpose register. May not be null or stackpointer.
/** * dst = src1 >>> (src2 & (size - 1)). * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or stackpointer. * @param src general purpose register. May not be null or stackpointer. * @param shift general purpose register. May not be null or stackpointer. */
public void lshr(int size, Register dst, Register src, Register shift) { super.lsr(size, dst, src, shift); }
dst = src >> (shiftAmt & log2(size)).
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null, stackpointer or zero-register.
  • src – general purpose register. May not be null, stackpointer or zero-register.
  • shiftAmt – amount by which src is shifted.
/** * dst = src >> (shiftAmt & log2(size)). * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null, stackpointer or zero-register. * @param src general purpose register. May not be null, stackpointer or zero-register. * @param shiftAmt amount by which src is shifted. */
public void ashr(int size, Register dst, Register src, long shiftAmt) { int shift = clampShiftAmt(size, shiftAmt); super.sbfm(size, dst, src, shift, size - 1); }
dst = src1 >> (src2 & log2(size)).
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or stackpointer.
  • src – general purpose register. May not be null or stackpointer.
  • shift – general purpose register. May not be null or stackpointer.
/** * dst = src1 >> (src2 & log2(size)). * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or stackpointer. * @param src general purpose register. May not be null or stackpointer. * @param shift general purpose register. May not be null or stackpointer. */
public void ashr(int size, Register dst, Register src, Register shift) { super.asr(size, dst, src, shift); }
Clamps shiftAmt into range 0 <= shiftamt < size according to JLS.
Params:
  • size – size of operation.
  • shiftAmt – arbitrary shift amount.
Returns:value between 0 and size - 1 inclusive that is equivalent to shiftAmt according to JLS.
/** * Clamps shiftAmt into range 0 <= shiftamt < size according to JLS. * * @param size size of operation. * @param shiftAmt arbitrary shift amount. * @return value between 0 and size - 1 inclusive that is equivalent to shiftAmt according to * JLS. */
private static int clampShiftAmt(int size, long shiftAmt) { return (int) (shiftAmt & (size - 1)); }
dst = src1 & src2.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or stackpointer.
  • src1 – general purpose register. May not be null or stackpointer.
  • src2 – general purpose register. May not be null or stackpointer.
/** * dst = src1 & src2. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or stackpointer. * @param src1 general purpose register. May not be null or stackpointer. * @param src2 general purpose register. May not be null or stackpointer. */
public void and(int size, Register dst, Register src1, Register src2) { super.and(size, dst, src1, src2, ShiftType.LSL, 0); }
dst = src1 ^ src2.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or stackpointer.
  • src1 – general purpose register. May not be null or stackpointer.
  • src2 – general purpose register. May not be null or stackpointer.
/** * dst = src1 ^ src2. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or stackpointer. * @param src1 general purpose register. May not be null or stackpointer. * @param src2 general purpose register. May not be null or stackpointer. */
public void eor(int size, Register dst, Register src1, Register src2) { super.eor(size, dst, src1, src2, ShiftType.LSL, 0); }
dst = src1 | src2.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or stackpointer.
  • src1 – general purpose register. May not be null or stackpointer.
  • src2 – general purpose register. May not be null or stackpointer.
/** * dst = src1 | src2. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or stackpointer. * @param src1 general purpose register. May not be null or stackpointer. * @param src2 general purpose register. May not be null or stackpointer. */
public void or(int size, Register dst, Register src1, Register src2) { super.orr(size, dst, src1, src2, ShiftType.LSL, 0); }
dst = src | bimm.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or zero-register.
  • src – general purpose register. May not be null or stack-pointer.
  • bimm – logical immediate. See LogicalImmediateTable for exact definition.
/** * dst = src | bimm. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or zero-register. * @param src general purpose register. May not be null or stack-pointer. * @param bimm logical immediate. See {@link AArch64Assembler.LogicalImmediateTable} for exact * definition. */
public void or(int size, Register dst, Register src, long bimm) { super.orr(size, dst, src, bimm); }
dst = ~src.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or stackpointer.
  • src – general purpose register. May not be null or stackpointer.
/** * dst = ~src. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or stackpointer. * @param src general purpose register. May not be null or stackpointer. */
public void not(int size, Register dst, Register src) { super.orn(size, dst, zr, src, ShiftType.LSL, 0); }
Sign-extend value from src into dst.
Params:
  • destSize – destination register size. Must be 32 or 64.
  • srcSize – source register size. Must be smaller than destSize.
  • dst – general purpose register. May not be null, stackpointer or zero-register.
  • src – general purpose register. May not be null, stackpointer or zero-register.
/** * Sign-extend value from src into dst. * * @param destSize destination register size. Must be 32 or 64. * @param srcSize source register size. Must be smaller than destSize. * @param dst general purpose register. May not be null, stackpointer or zero-register. * @param src general purpose register. May not be null, stackpointer or zero-register. */
public void sxt(int destSize, int srcSize, Register dst, Register src) { assert (srcSize < destSize && srcSize > 0); super.sbfm(destSize, dst, src, 0, srcSize - 1); }
dst = src if condition else -src.
Params:
  • size – register size. Must be 32 or 64.
  • dst – general purpose register. May not be null or the stackpointer.
  • src – general purpose register. May not be null or the stackpointer.
  • condition – any condition except AV or NV. May not be null.
/** * dst = src if condition else -src. * * @param size register size. Must be 32 or 64. * @param dst general purpose register. May not be null or the stackpointer. * @param src general purpose register. May not be null or the stackpointer. * @param condition any condition except AV or NV. May not be null. */
public void csneg(int size, Register dst, Register src, ConditionFlag condition) { super.csneg(size, dst, src, src, condition.negate()); }
Returns:True if the immediate can be used directly for logical 64-bit instructions.
/** * @return True if the immediate can be used directly for logical 64-bit instructions. */
public static boolean isLogicalImmediate(long imm) { return LogicalImmediateTable.isRepresentable(true, imm) != LogicalImmediateTable.Representable.NO; }
Returns:True if the immediate can be used directly for logical 32-bit instructions.
/** * @return True if the immediate can be used directly for logical 32-bit instructions. */
public static boolean isLogicalImmediate(int imm) { return LogicalImmediateTable.isRepresentable(imm) == LogicalImmediateTable.Representable.YES; } /* Float instructions */
Moves integer to float, float to integer, or float to float. Does not support integer to integer moves.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – Either floating-point or general-purpose register. If general-purpose register may not be stackpointer or zero register. Cannot be null in any case.
  • src – Either floating-point or general-purpose register. If general-purpose register may not be stackpointer. Cannot be null in any case.
/** * Moves integer to float, float to integer, or float to float. Does not support integer to * integer moves. * * @param size register size. Has to be 32 or 64. * @param dst Either floating-point or general-purpose register. If general-purpose register may * not be stackpointer or zero register. Cannot be null in any case. * @param src Either floating-point or general-purpose register. If general-purpose register may * not be stackpointer. Cannot be null in any case. */
@Override public void fmov(int size, Register dst, Register src) { assert !(dst.getRegisterCategory().equals(CPU) && src.getRegisterCategory().equals(CPU)) : "src and dst cannot both be integer registers."; if (dst.getRegisterCategory().equals(CPU)) { super.fmovFpu2Cpu(size, dst, src); } else if (src.getRegisterCategory().equals(CPU)) { super.fmovCpu2Fpu(size, dst, src); } else { super.fmov(size, dst, src); } }
Params:
  • size – register size. Has to be 32 or 64.
  • dst – floating point register. May not be null.
  • imm – immediate that is loaded into dst. If size is 32 only float immediates can be loaded, i.e. (float) imm == imm must be true. In all cases isFloatImmediate, respectively #isDoubleImmediate must be true depending on size.
/** * * @param size register size. Has to be 32 or 64. * @param dst floating point register. May not be null. * @param imm immediate that is loaded into dst. If size is 32 only float immediates can be * loaded, i.e. (float) imm == imm must be true. In all cases * {@code isFloatImmediate}, respectively {@code #isDoubleImmediate} must be true * depending on size. */
@Override public void fmov(int size, Register dst, double imm) { if (imm == 0.0) { assert Double.doubleToRawLongBits(imm) == 0L : "-0.0 is no valid immediate."; super.fmovCpu2Fpu(size, dst, zr); } else { super.fmov(size, dst, imm); } }
Returns:true if immediate can be loaded directly into floating-point register, false otherwise.
/** * * @return true if immediate can be loaded directly into floating-point register, false * otherwise. */
public static boolean isDoubleImmediate(double imm) { return Double.doubleToRawLongBits(imm) == 0L || AArch64Assembler.isDoubleImmediate(imm); }
Returns:true if immediate can be loaded directly into floating-point register, false otherwise.
/** * * @return true if immediate can be loaded directly into floating-point register, false * otherwise. */
public static boolean isFloatImmediate(float imm) { return Float.floatToRawIntBits(imm) == 0 || AArch64Assembler.isFloatImmediate(imm); }
Conditional move. dst = src1 if condition else src2.
Params:
  • size – register size.
  • result – floating point register. May not be null.
  • trueValue – floating point register. May not be null.
  • falseValue – floating point register. May not be null.
  • condition – every condition allowed. May not be null.
/** * Conditional move. dst = src1 if condition else src2. * * @param size register size. * @param result floating point register. May not be null. * @param trueValue floating point register. May not be null. * @param falseValue floating point register. May not be null. * @param condition every condition allowed. May not be null. */
public void fcmov(int size, Register result, Register trueValue, Register falseValue, ConditionFlag condition) { super.fcsel(size, result, trueValue, falseValue, condition); }
dst = src1 % src2.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – floating-point register. May not be null.
  • n – numerator. Floating-point register. May not be null.
  • d – denominator. Floating-point register. May not be null.
/** * dst = src1 % src2. * * @param size register size. Has to be 32 or 64. * @param dst floating-point register. May not be null. * @param n numerator. Floating-point register. May not be null. * @param d denominator. Floating-point register. May not be null. */
public void frem(int size, Register dst, Register n, Register d) { // There is no frem instruction, instead we compute the remainder using the relation: // rem = n - Truncating(n / d) * d super.fdiv(size, dst, n, d); super.frintz(size, dst, dst); super.fmsub(size, dst, dst, d, n); } /* Branches */
Compares x and y and sets condition flags.
Params:
  • size – register size. Has to be 32 or 64.
  • x – general purpose register. May not be null or stackpointer.
  • y – general purpose register. May not be null or stackpointer.
/** * Compares x and y and sets condition flags. * * @param size register size. Has to be 32 or 64. * @param x general purpose register. May not be null or stackpointer. * @param y general purpose register. May not be null or stackpointer. */
public void cmp(int size, Register x, Register y) { assert size == 32 || size == 64; super.subs(size, zr, x, y, ShiftType.LSL, 0); }
Compares x to y and sets condition flags.
Params:
  • size – register size. Has to be 32 or 64.
  • x – general purpose register. May not be null or stackpointer.
  • y – comparison immediate, isComparisonImmediate(long) has to be true for it.
/** * Compares x to y and sets condition flags. * * @param size register size. Has to be 32 or 64. * @param x general purpose register. May not be null or stackpointer. * @param y comparison immediate, {@link #isComparisonImmediate(long)} has to be true for it. */
public void cmp(int size, Register x, int y) { assert size == 32 || size == 64; if (y < 0) { super.adds(size, zr, x, -y); } else { super.subs(size, zr, x, y); } }
Sets condition flags according to result of x & y.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or stack-pointer.
  • x – general purpose register. May not be null or stackpointer.
  • y – general purpose register. May not be null or stackpointer.
/** * Sets condition flags according to result of x & y. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or stack-pointer. * @param x general purpose register. May not be null or stackpointer. * @param y general purpose register. May not be null or stackpointer. */
public void ands(int size, Register dst, Register x, Register y) { super.ands(size, dst, x, y, ShiftType.LSL, 0); }
Sets overflow flag according to result of x * y.
Params:
  • size – register size. Has to be 32 or 64.
  • dst – general purpose register. May not be null or stack-pointer.
  • x – general purpose register. May not be null or stackpointer.
  • y – general purpose register. May not be null or stackpointer.
/** * Sets overflow flag according to result of x * y. * * @param size register size. Has to be 32 or 64. * @param dst general purpose register. May not be null or stack-pointer. * @param x general purpose register. May not be null or stackpointer. * @param y general purpose register. May not be null or stackpointer. */
public void mulvs(int size, Register dst, Register x, Register y) { try (ScratchRegister sc1 = getScratchRegister(); ScratchRegister sc2 = getScratchRegister()) { switch (size) { case 64: { // Be careful with registers: it's possible that x, y, and dst are the same // register. Register rscratch1 = sc1.getRegister(); Register rscratch2 = sc2.getRegister(); mul(64, rscratch1, x, y); // Result bits 0..63 smulh(64, rscratch2, x, y); // Result bits 64..127 // Top is pure sign ext subs(64, zr, rscratch2, rscratch1, ShiftType.ASR, 63); // Copy all 64 bits of the result into dst mov(64, dst, rscratch1); mov(rscratch1, 0x80000000); // Develop 0 (EQ), or 0x80000000 (NE) cmov(32, rscratch1, rscratch1, zr, ConditionFlag.NE); cmp(32, rscratch1, 1); // 0x80000000 - 1 => VS break; } case 32: { Register rscratch1 = sc1.getRegister(); smaddl(rscratch1, x, y, zr); // Copy the low 32 bits of the result into dst mov(32, dst, rscratch1); subs(64, zr, rscratch1, rscratch1, ExtendType.SXTW, 0); // NE => overflow mov(rscratch1, 0x80000000); // Develop 0 (EQ), or 0x80000000 (NE) cmov(32, rscratch1, rscratch1, zr, ConditionFlag.NE); cmp(32, rscratch1, 1); // 0x80000000 - 1 => VS break; } } } }
When patching up Labels we have to know what kind of code to generate.
/** * When patching up Labels we have to know what kind of code to generate. */
public enum PatchLabelKind { BRANCH_CONDITIONALLY(0x0), BRANCH_UNCONDITIONALLY(0x1), BRANCH_NONZERO(0x2), BRANCH_ZERO(0x3), BRANCH_BIT_NONZERO(0x4), BRANCH_BIT_ZERO(0x5), JUMP_ADDRESS(0x6), ADR(0x7);
Offset by which additional information for branch conditionally, branch zero and branch non zero has to be shifted.
/** * Offset by which additional information for branch conditionally, branch zero and branch * non zero has to be shifted. */
public static final int INFORMATION_OFFSET = 5; public final int encoding; PatchLabelKind(int encoding) { this.encoding = encoding; }
Returns:PatchLabelKind with given encoding.
/** * @return PatchLabelKind with given encoding. */
private static PatchLabelKind fromEncoding(int encoding) { return values()[encoding & NumUtil.getNbitNumberInt(INFORMATION_OFFSET)]; } } public void adr(Register dst, Label label) { // TODO Handle case where offset is too large for a single jump instruction if (label.isBound()) { int offset = label.position() - position(); super.adr(dst, offset); } else { label.addPatchAt(position()); // Encode condition flag so that we know how to patch the instruction later emitInt(PatchLabelKind.ADR.encoding | dst.encoding << PatchLabelKind.INFORMATION_OFFSET); } }
Compare register and branch if non-zero.
Params:
  • size – Instruction size in bits. Should be either 32 or 64.
  • cmp – general purpose register. May not be null, zero-register or stackpointer.
  • label – Can only handle 21-bit word-aligned offsets for now. May be unbound. Non null.
/** * Compare register and branch if non-zero. * * @param size Instruction size in bits. Should be either 32 or 64. * @param cmp general purpose register. May not be null, zero-register or stackpointer. * @param label Can only handle 21-bit word-aligned offsets for now. May be unbound. Non null. */
public void cbnz(int size, Register cmp, Label label) { // TODO Handle case where offset is too large for a single jump instruction if (label.isBound()) { int offset = label.position() - position(); super.cbnz(size, cmp, offset); } else { label.addPatchAt(position()); int regEncoding = cmp.encoding << (PatchLabelKind.INFORMATION_OFFSET + 1); int sizeEncoding = (size == 64 ? 1 : 0) << PatchLabelKind.INFORMATION_OFFSET; // Encode condition flag so that we know how to patch the instruction later emitInt(PatchLabelKind.BRANCH_NONZERO.encoding | regEncoding | sizeEncoding); } }
Compare register and branch if zero.
Params:
  • size – Instruction size in bits. Should be either 32 or 64.
  • cmp – general purpose register. May not be null, zero-register or stackpointer.
  • label – Can only handle 21-bit word-aligned offsets for now. May be unbound. Non null.
/** * Compare register and branch if zero. * * @param size Instruction size in bits. Should be either 32 or 64. * @param cmp general purpose register. May not be null, zero-register or stackpointer. * @param label Can only handle 21-bit word-aligned offsets for now. May be unbound. Non null. */
public void cbz(int size, Register cmp, Label label) { // TODO Handle case where offset is too large for a single jump instruction if (label.isBound()) { int offset = label.position() - position(); super.cbz(size, cmp, offset); } else { label.addPatchAt(position()); int regEncoding = cmp.encoding << (PatchLabelKind.INFORMATION_OFFSET + 1); int sizeEncoding = (size == 64 ? 1 : 0) << PatchLabelKind.INFORMATION_OFFSET; // Encode condition flag so that we know how to patch the instruction later emitInt(PatchLabelKind.BRANCH_ZERO.encoding | regEncoding | sizeEncoding); } }
Test a single bit and branch if the bit is nonzero.
Params:
  • cmp – general purpose register. May not be null, zero-register or stackpointer.
  • uimm6 – Unsigned 6-bit bit index.
  • label – Can only handle 21-bit word-aligned offsets for now. May be unbound. Non null.
/** * Test a single bit and branch if the bit is nonzero. * * @param cmp general purpose register. May not be null, zero-register or stackpointer. * @param uimm6 Unsigned 6-bit bit index. * @param label Can only handle 21-bit word-aligned offsets for now. May be unbound. Non null. */
public void tbnz(Register cmp, int uimm6, Label label) { assert NumUtil.isUnsignedNbit(6, uimm6); if (label.isBound()) { int offset = label.position() - position(); super.tbnz(cmp, uimm6, offset); } else { label.addPatchAt(position()); int indexEncoding = uimm6 << PatchLabelKind.INFORMATION_OFFSET; int regEncoding = cmp.encoding << (PatchLabelKind.INFORMATION_OFFSET + 6); emitInt(PatchLabelKind.BRANCH_BIT_NONZERO.encoding | indexEncoding | regEncoding); } }
Test a single bit and branch if the bit is zero.
Params:
  • cmp – general purpose register. May not be null, zero-register or stackpointer.
  • uimm6 – Unsigned 6-bit bit index.
  • label – Can only handle 21-bit word-aligned offsets for now. May be unbound. Non null.
/** * Test a single bit and branch if the bit is zero. * * @param cmp general purpose register. May not be null, zero-register or stackpointer. * @param uimm6 Unsigned 6-bit bit index. * @param label Can only handle 21-bit word-aligned offsets for now. May be unbound. Non null. */
public void tbz(Register cmp, int uimm6, Label label) { assert NumUtil.isUnsignedNbit(6, uimm6); if (label.isBound()) { int offset = label.position() - position(); super.tbz(cmp, uimm6, offset); } else { label.addPatchAt(position()); int indexEncoding = uimm6 << PatchLabelKind.INFORMATION_OFFSET; int regEncoding = cmp.encoding << (PatchLabelKind.INFORMATION_OFFSET + 6); emitInt(PatchLabelKind.BRANCH_BIT_ZERO.encoding | indexEncoding | regEncoding); } }
Branches to label if condition is true.
Params:
  • condition – any condition value allowed. Non null.
  • label – Can only handle 21-bit word-aligned offsets for now. May be unbound. Non null.
/** * Branches to label if condition is true. * * @param condition any condition value allowed. Non null. * @param label Can only handle 21-bit word-aligned offsets for now. May be unbound. Non null. */
public void branchConditionally(ConditionFlag condition, Label label) { // TODO Handle case where offset is too large for a single jump instruction if (label.isBound()) { int offset = label.position() - position(); super.b(condition, offset); } else { label.addPatchAt(position()); // Encode condition flag so that we know how to patch the instruction later emitInt(PatchLabelKind.BRANCH_CONDITIONALLY.encoding | condition.encoding << PatchLabelKind.INFORMATION_OFFSET); } }
Branches if condition is true. Address of jump is patched up by HotSpot c++ code.
Params:
  • condition – any condition value allowed. Non null.
/** * Branches if condition is true. Address of jump is patched up by HotSpot c++ code. * * @param condition any condition value allowed. Non null. */
public void branchConditionally(ConditionFlag condition) { // Correct offset is fixed up by HotSpot later. super.b(condition, 0); }
Jumps to label. param label Can only handle signed 28-bit offsets. May be unbound. Non null.
/** * Jumps to label. * * param label Can only handle signed 28-bit offsets. May be unbound. Non null. */
@Override public void jmp(Label label) { // TODO Handle case where offset is too large for a single jump instruction if (label.isBound()) { int offset = label.position() - position(); super.b(offset); } else { label.addPatchAt(position()); emitInt(PatchLabelKind.BRANCH_UNCONDITIONALLY.encoding); } }
Jump to address in dest.
Params:
  • dest – General purpose register. May not be null, zero-register or stackpointer.
/** * Jump to address in dest. * * @param dest General purpose register. May not be null, zero-register or stackpointer. */
public void jmp(Register dest) { super.br(dest); }
Immediate jump instruction fixed up by HotSpot c++ code.
/** * Immediate jump instruction fixed up by HotSpot c++ code. */
public void jmp() { // Offset has to be fixed up by c++ code. super.b(0); }
Returns:true if immediate offset can be used in a single branch instruction.
/** * * @return true if immediate offset can be used in a single branch instruction. */
public static boolean isBranchImmediateOffset(long imm) { return NumUtil.isSignedNbit(28, imm); } /* system instructions */
Exception codes used when calling hlt instruction.
/** * Exception codes used when calling hlt instruction. */
public enum AArch64ExceptionCode { NO_SWITCH_TARGET(0x0), BREAKPOINT(0x1); public final int encoding; AArch64ExceptionCode(int encoding) { this.encoding = encoding; } }
Halting mode software breakpoint: Enters halting mode debug state if enabled, else treated as UNALLOCATED instruction.
Params:
  • exceptionCode – exception code specifying why halt was called. Non null.
/** * Halting mode software breakpoint: Enters halting mode debug state if enabled, else treated as * UNALLOCATED instruction. * * @param exceptionCode exception code specifying why halt was called. Non null. */
public void hlt(AArch64ExceptionCode exceptionCode) { super.hlt(exceptionCode.encoding); }
Monitor mode software breakpoint: exception routed to a debug monitor executing in a higher exception level.
Params:
  • exceptionCode – exception code specifying why break was called. Non null.
/** * Monitor mode software breakpoint: exception routed to a debug monitor executing in a higher * exception level. * * @param exceptionCode exception code specifying why break was called. Non null. */
public void brk(AArch64ExceptionCode exceptionCode) { super.brk(exceptionCode.encoding); } public void pause() { throw GraalError.unimplemented(); }
Executes no-op instruction. No registers or flags are updated, except for PC.
/** * Executes no-op instruction. No registers or flags are updated, except for PC. */
public void nop() { super.hint(SystemHint.NOP); }
Same as nop().
/** * Same as {@link #nop()}. */
@Override public void ensureUniquePC() { nop(); }
Aligns PC.
Params:
  • modulus – Has to be positive multiple of 4.
/** * Aligns PC. * * @param modulus Has to be positive multiple of 4. */
@Override public void align(int modulus) { assert modulus > 0 && (modulus & 0x3) == 0 : "Modulus has to be a positive multiple of 4."; if (position() % modulus == 0) { return; } int offset = modulus - position() % modulus; for (int i = 0; i < offset; i += 4) { nop(); } }
Patches jump targets when label gets bound.
/** * Patches jump targets when label gets bound. */
@Override protected void patchJumpTarget(int branch, int jumpTarget) { int instruction = getInt(branch); int branchOffset = jumpTarget - branch; PatchLabelKind type = PatchLabelKind.fromEncoding(instruction); switch (type) { case BRANCH_CONDITIONALLY: ConditionFlag cf = ConditionFlag.fromEncoding(instruction >>> PatchLabelKind.INFORMATION_OFFSET); super.b(cf, branchOffset, branch); break; case BRANCH_UNCONDITIONALLY: super.b(branchOffset, branch); break; case JUMP_ADDRESS: int offset = instruction >>> PatchLabelKind.INFORMATION_OFFSET; emitInt(jumpTarget - offset, branch); break; case BRANCH_NONZERO: case BRANCH_ZERO: { int information = instruction >>> PatchLabelKind.INFORMATION_OFFSET; int sizeEncoding = information & 1; int regEncoding = information >>> 1; Register reg = AArch64.cpuRegisters.get(regEncoding); // 1 => 64; 0 => 32 int size = sizeEncoding * 32 + 32; switch (type) { case BRANCH_NONZERO: super.cbnz(size, reg, branchOffset, branch); break; case BRANCH_ZERO: super.cbz(size, reg, branchOffset, branch); break; } break; } case BRANCH_BIT_NONZERO: case BRANCH_BIT_ZERO: { int information = instruction >>> PatchLabelKind.INFORMATION_OFFSET; int sizeEncoding = information & NumUtil.getNbitNumberInt(6); int regEncoding = information >>> 6; Register reg = AArch64.cpuRegisters.get(regEncoding); switch (type) { case BRANCH_BIT_NONZERO: super.tbnz(reg, sizeEncoding, branchOffset, branch); break; case BRANCH_BIT_ZERO: super.tbz(reg, sizeEncoding, branchOffset, branch); break; } break; } case ADR: { int information = instruction >>> PatchLabelKind.INFORMATION_OFFSET; int regEncoding = information; Register reg = AArch64.cpuRegisters.get(regEncoding); super.adr(reg, branchOffset, branch); break; } default: throw GraalError.shouldNotReachHere(); } }
Generates an address of the form base + displacement. Does not change base register to fulfill this requirement. Will fail if displacement cannot be represented directly as address.
Params:
  • base – general purpose register. May not be null or the zero register.
  • displacement – arbitrary displacement added to base.
Returns:AArch64Address referencing memory at base + displacement.
/** * Generates an address of the form {@code base + displacement}. * * Does not change base register to fulfill this requirement. Will fail if displacement cannot * be represented directly as address. * * @param base general purpose register. May not be null or the zero register. * @param displacement arbitrary displacement added to base. * @return AArch64Address referencing memory at {@code base + displacement}. */
@Override public AArch64Address makeAddress(Register base, int displacement) { return makeAddress(base, displacement, zr, /* signExtend */false, /* transferSize */0, zr, /* allowOverwrite */false); } @Override public AArch64Address getPlaceholder(int instructionStartPosition) { return AArch64Address.PLACEHOLDER; } public void addressOf(Register dst) { // This will be fixed up later. super.adrp(dst); super.add(64, dst, dst, 0); }
Loads an address into Register d.
Params:
  • d – general purpose register. May not be null.
  • a – AArch64Address the address of an operand.
/** * Loads an address into Register d. * * @param d general purpose register. May not be null. * @param a AArch64Address the address of an operand. */
public void lea(Register d, AArch64Address a) { a.lea(this, d); } }