package org.graalvm.compiler.nodes.calc;
import static org.graalvm.compiler.nodeinfo.NodeCycles.CYCLES_1;
import static org.graalvm.compiler.nodeinfo.NodeSize.SIZE_1;
import java.io.Serializable;
import java.util.function.Function;
import org.graalvm.compiler.core.common.type.ArithmeticOpTable;
import org.graalvm.compiler.core.common.type.ArithmeticOpTable.BinaryOp;
import org.graalvm.compiler.core.common.type.Stamp;
import org.graalvm.compiler.debug.GraalError;
import org.graalvm.compiler.graph.Graph;
import org.graalvm.compiler.graph.Node;
import org.graalvm.compiler.graph.NodeClass;
import org.graalvm.compiler.graph.iterators.NodePredicate;
import org.graalvm.compiler.graph.spi.Canonicalizable;
import org.graalvm.compiler.graph.spi.CanonicalizerTool;
import org.graalvm.compiler.nodeinfo.NodeInfo;
import org.graalvm.compiler.nodes.ArithmeticOperation;
import org.graalvm.compiler.nodes.ConstantNode;
import org.graalvm.compiler.nodes.NodeView;
import org.graalvm.compiler.nodes.StructuredGraph;
import org.graalvm.compiler.nodes.ValueNode;
import org.graalvm.compiler.nodes.ValuePhiNode;
import org.graalvm.compiler.nodes.spi.ArithmeticLIRLowerable;
import org.graalvm.compiler.nodes.spi.NodeValueMap;
import jdk.vm.ci.meta.Constant;
@NodeInfo(cycles = CYCLES_1, size = SIZE_1)
public abstract class BinaryArithmeticNode<OP> extends BinaryNode implements ArithmeticOperation, ArithmeticLIRLowerable, Canonicalizable.Binary<ValueNode> {
@SuppressWarnings("rawtypes") public static final NodeClass<BinaryArithmeticNode> TYPE = NodeClass.create(BinaryArithmeticNode.class);
protected interface SerializableBinaryFunction<T> extends Function<ArithmeticOpTable, BinaryOp<T>>, Serializable {
}
protected final SerializableBinaryFunction<OP> getOp;
protected BinaryArithmeticNode(NodeClass<? extends BinaryArithmeticNode<OP>> c, SerializableBinaryFunction<OP> getOp, ValueNode x, ValueNode y) {
super(c, getOp.apply(ArithmeticOpTable.forStamp(x.stamp(NodeView.DEFAULT))).foldStamp(x.stamp(NodeView.DEFAULT), y.stamp(NodeView.DEFAULT)), x, y);
this.getOp = getOp;
}
protected final BinaryOp<OP> getOp(ValueNode forX, ValueNode forY) {
ArithmeticOpTable table = ArithmeticOpTable.forStamp(forX.stamp(NodeView.DEFAULT));
assert table.equals(ArithmeticOpTable.forStamp(forY.stamp(NodeView.DEFAULT)));
return getOp.apply(table);
}
@Override
public final BinaryOp<OP> getArithmeticOp() {
return getOp(getX(), getY());
}
public boolean isAssociative() {
return getArithmeticOp().isAssociative();
}
@Override
public ValueNode canonical(CanonicalizerTool tool, ValueNode forX, ValueNode forY) {
NodeView view = NodeView.from(tool);
ValueNode result = tryConstantFold(getOp(forX, forY), forX, forY, stamp(view), view);
if (result != null) {
return result;
}
return this;
}
@SuppressWarnings("unused")
public static <OP> ConstantNode tryConstantFold(BinaryOp<OP> op, ValueNode forX, ValueNode forY, Stamp stamp, NodeView view) {
if (forX.isConstant() && forY.isConstant()) {
Constant ret = op.foldConstant(forX.asConstant(), forY.asConstant());
if (ret != null) {
return ConstantNode.forPrimitive(stamp, ret);
}
}
return null;
}
@Override
public Stamp foldStamp(Stamp stampX, Stamp stampY) {
assert stampX.isCompatible(x.stamp(NodeView.DEFAULT)) && stampY.isCompatible(y.stamp(NodeView.DEFAULT));
return getArithmeticOp().foldStamp(stampX, stampY);
}
public static ValueNode add(StructuredGraph graph, ValueNode v1, ValueNode v2, NodeView view) {
return graph.addOrUniqueWithInputs(AddNode.create(v1, v2, view));
}
public static ValueNode add(ValueNode v1, ValueNode v2, NodeView view) {
return AddNode.create(v1, v2, view);
}
public static ValueNode mul(StructuredGraph graph, ValueNode v1, ValueNode v2, NodeView view) {
return graph.addOrUniqueWithInputs(MulNode.create(v1, v2, view));
}
public static ValueNode mul(ValueNode v1, ValueNode v2, NodeView view) {
return MulNode.create(v1, v2, view);
}
public static ValueNode sub(StructuredGraph graph, ValueNode v1, ValueNode v2, NodeView view) {
return graph.addOrUniqueWithInputs(SubNode.create(v1, v2, view));
}
public static ValueNode sub(ValueNode v1, ValueNode v2, NodeView view) {
return SubNode.create(v1, v2, view);
}
private enum ReassociateMatch {
x,
y;
public ValueNode getValue(BinaryNode binary) {
switch (this) {
case x:
return binary.getX();
case y:
return binary.getY();
default:
throw GraalError.shouldNotReachHere();
}
}
public ValueNode getOtherValue(BinaryNode binary) {
switch (this) {
case x:
return binary.getY();
case y:
return binary.getX();
default:
throw GraalError.shouldNotReachHere();
}
}
}
private static ReassociateMatch findReassociate(BinaryNode binary, NodePredicate criterion) {
boolean resultX = criterion.apply(binary.getX());
boolean resultY = criterion.apply(binary.getY());
if (resultX && !resultY) {
return ReassociateMatch.x;
}
if (!resultX && resultY) {
return ReassociateMatch.y;
}
return null;
}
public static ValueNode reassociate(BinaryArithmeticNode<?> node, NodePredicate criterion, ValueNode forX, ValueNode forY, NodeView view) {
assert node.getOp(forX, forY).isAssociative();
ReassociateMatch match1 = findReassociate(node, criterion);
if (match1 == null) {
return node;
}
ValueNode otherValue = match1.getOtherValue(node);
boolean addSub = false;
boolean subAdd = false;
if (otherValue.getClass() != node.getClass()) {
if (node instanceof AddNode && otherValue instanceof SubNode) {
addSub = true;
} else if (node instanceof SubNode && otherValue instanceof AddNode) {
subAdd = true;
} else {
return node;
}
}
BinaryNode other = (BinaryNode) otherValue;
ReassociateMatch match2 = findReassociate(other, criterion);
if (match2 == null) {
return node;
}
boolean invertA = false;
boolean aSub = false;
boolean invertM1 = false;
boolean invertM2 = false;
if (addSub) {
invertM2 = match2 == ReassociateMatch.y;
invertA = !invertM2;
} else if (subAdd) {
invertA = invertM2 = match1 == ReassociateMatch.x;
invertM1 = !invertM2;
} else if (node instanceof SubNode && other instanceof SubNode) {
invertA = match1 == ReassociateMatch.x ^ match2 == ReassociateMatch.x;
aSub = match1 == ReassociateMatch.y && match2 == ReassociateMatch.y;
invertM1 = match1 == ReassociateMatch.y && match2 == ReassociateMatch.x;
invertM2 = match1 == ReassociateMatch.x && match2 == ReassociateMatch.x;
}
assert !(invertM1 && invertM2) && !(invertA && aSub);
ValueNode m1 = match1.getValue(node);
ValueNode m2 = match2.getValue(other);
ValueNode a = match2.getOtherValue(other);
if (node instanceof AddNode || node instanceof SubNode) {
ValueNode associated;
if (invertM1) {
associated = BinaryArithmeticNode.sub(m2, m1, view);
} else if (invertM2) {
associated = BinaryArithmeticNode.sub(m1, m2, view);
} else {
associated = BinaryArithmeticNode.add(m1, m2, view);
}
if (invertA) {
return BinaryArithmeticNode.sub(associated, a, view);
}
if (aSub) {
return BinaryArithmeticNode.sub(a, associated, view);
}
return BinaryArithmeticNode.add(a, associated, view);
} else if (node instanceof MulNode) {
return BinaryArithmeticNode.mul(a, AddNode.mul(m1, m2, view), view);
} else if (node instanceof AndNode) {
return new AndNode(a, new AndNode(m1, m2));
} else if (node instanceof OrNode) {
return new OrNode(a, new OrNode(m1, m2));
} else if (node instanceof XorNode) {
return new XorNode(a, new XorNode(m1, m2));
} else {
throw GraalError.shouldNotReachHere();
}
}
@SuppressWarnings("deprecation")
public BinaryNode maybeCommuteInputs() {
assert this instanceof BinaryCommutative;
if (!y.isConstant() && (x.isConstant() || x.getId() > y.getId())) {
ValueNode tmp = x;
x = y;
y = tmp;
if (graph() != null) {
BinaryNode duplicate = graph().findDuplicate(this);
if (duplicate != null) {
return duplicate;
}
}
}
return this;
}
protected boolean shouldSwapInputs(NodeValueMap nodeValueMap) {
final boolean xHasOtherUsages = getX().hasUsagesOtherThan(this, nodeValueMap);
final boolean yHasOtherUsages = getY().hasUsagesOtherThan(this, nodeValueMap);
if (!getY().isConstant() && !yHasOtherUsages) {
if (xHasOtherUsages == yHasOtherUsages) {
return getY() instanceof ValuePhiNode && getY().inputs().contains(this);
} else {
return true;
}
}
return false;
}
}