/*
 * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package org.graalvm.compiler.nodeinfo;

Constants representing an estimation of of the size needed to represent a compiler node in machine code.
/** * Constants representing an estimation of of the size needed to represent a compiler node in * machine code. */
public enum NodeSize {
The default value of the NodeInfo.size() property.

For further information about the use of SIZE_UNSET see NodeInfo.size().

/** * The default value of the {@link NodeInfo#size()} property. * <p> * For further information about the use of {@code SIZE_UNSET} see {@link NodeInfo#size()}. */
SIZE_UNSET(0),
Nodes for which, due to arbitrary reasons, no estimation can be made either (1) statically without inspecting the properties of a node or (2) at all (like e.g. for an invocation).

Nodes annotated with SIZE_UNKNOWN should specify the NodeInfo.sizeRationale() property to clarify why an estimation cannot be done.

/** * Nodes for which, due to arbitrary reasons, no estimation can be made either (1) statically * without inspecting the properties of a node or (2) at all (like e.g. for an invocation). * <p> * Nodes annotated with {@code SIZE_UNKNOWN} should specify the {@link NodeInfo#sizeRationale()} * property to clarify why an estimation cannot be done. */
SIZE_UNKNOWN(0),
Nodes for which code size information is irrelevant and can be ignored, e.g. for test nodes.
/** * Nodes for which code size information is irrelevant and can be ignored, e.g. for test nodes. */
SIZE_IGNORED(0),
Nodes that do not require any code to be generated in order to be "executed", e.g. a pinode node.
/** * Nodes that do not require any code to be generated in order to be "executed", e.g. a pinode * node. */
SIZE_0(0), SIZE_1(1), SIZE_2(2), SIZE_4(4), SIZE_8(8), SIZE_16(16), SIZE_32(32), SIZE_64(64), SIZE_128(128), SIZE_256(256), SIZE_512(512), SIZE_1024(1024); public final int value; NodeSize(int value) { this.value = value; } public static final int IGNORE_SIZE_CONTRACT_FACTOR = 0xFFFF; public static NodeSize compute(NodeSize base, int opCount) { assert opCount >= 0; if (opCount == 0) { return SIZE_0; } assert base.ordinal() > SIZE_0.ordinal(); int log2 = log2(base.value * opCount); NodeSize[] values = values(); for (int i = base.ordinal(); i < values.length; i++) { if (log2(values[i].value) == log2) { return values[i]; } } return SIZE_1024; } public static NodeSize compute(int rawValue) { assert rawValue >= 0; if (rawValue == 0) { return SIZE_0; } assert rawValue > 0; NodeSize[] values = values(); for (int i = SIZE_0.ordinal(); i < values.length - 1; i++) { if (values[i].value >= rawValue && rawValue <= values[i + 1].value) { int r1 = values[i].value; int r2 = values[i + 1].value; int diff = r2 - r1; return rawValue - r1 > diff / 2 ? values[i + 1] : values[i]; } } return SIZE_1024; } private static int log2(int val) { return (Integer.SIZE - 1) - Integer.numberOfLeadingZeros(val); } }