/*
 * Copyright (C) 2012 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.GwtIncompatible;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.Consumer;
import org.checkerframework.checker.nullness.qual.MonotonicNonNull;

CompactLinkedHashSet is an implementation of a Set, which a predictable iteration order that matches the insertion order. All optional operations (adding and removing) are supported. All elements, including null, are permitted.

contains(x), add(x) and remove(x), are all (expected and amortized) constant time operations. Expected in the hashtable sense (depends on the hash function doing a good job of distributing the elements to the buckets to a distribution not far from uniform), and amortized since some operations can trigger a hash table resize.

This implementation consumes significantly less memory than java.util.LinkedHashSet or even java.util.HashSet, and places considerably less load on the garbage collector. Like java.util.LinkedHashSet, it offers insertion-order iteration, with identical behavior.

This class should not be assumed to be universally superior to java.util.LinkedHashSet. Generally speaking, this class reduces object allocation and memory consumption at the price of moderately increased constant factors of CPU. Only use this class when there is a specific reason to prioritize memory over CPU.

Author:Louis Wasserman
/** * CompactLinkedHashSet is an implementation of a Set, which a predictable iteration order that * matches the insertion order. All optional operations (adding and removing) are supported. All * elements, including {@code null}, are permitted. * * <p>{@code contains(x)}, {@code add(x)} and {@code remove(x)}, are all (expected and amortized) * constant time operations. Expected in the hashtable sense (depends on the hash function doing a * good job of distributing the elements to the buckets to a distribution not far from uniform), and * amortized since some operations can trigger a hash table resize. * * <p>This implementation consumes significantly less memory than {@code java.util.LinkedHashSet} or * even {@code java.util.HashSet}, and places considerably less load on the garbage collector. Like * {@code java.util.LinkedHashSet}, it offers insertion-order iteration, with identical behavior. * * <p>This class should not be assumed to be universally superior to {@code * java.util.LinkedHashSet}. Generally speaking, this class reduces object allocation and memory * consumption at the price of moderately increased constant factors of CPU. Only use this class * when there is a specific reason to prioritize memory over CPU. * * @author Louis Wasserman */
@GwtIncompatible // not worth using in GWT for now class CompactLinkedHashSet<E> extends CompactHashSet<E> {
Creates an empty CompactLinkedHashSet instance.
/** Creates an empty {@code CompactLinkedHashSet} instance. */
public static <E> CompactLinkedHashSet<E> create() { return new CompactLinkedHashSet<E>(); }
Creates a mutable CompactLinkedHashSet instance containing the elements of the given collection in the order returned by the collection's iterator.
Params:
  • collection – the elements that the set should contain
Returns:a new CompactLinkedHashSet containing those elements (minus duplicates)
/** * Creates a <i>mutable</i> {@code CompactLinkedHashSet} instance containing the elements of the * given collection in the order returned by the collection's iterator. * * @param collection the elements that the set should contain * @return a new {@code CompactLinkedHashSet} containing those elements (minus duplicates) */
public static <E> CompactLinkedHashSet<E> create(Collection<? extends E> collection) { CompactLinkedHashSet<E> set = createWithExpectedSize(collection.size()); set.addAll(collection); return set; }
Creates a CompactLinkedHashSet instance containing the given elements in unspecified order.
Params:
  • elements – the elements that the set should contain
Returns:a new CompactLinkedHashSet containing those elements (minus duplicates)
/** * Creates a {@code CompactLinkedHashSet} instance containing the given elements in unspecified * order. * * @param elements the elements that the set should contain * @return a new {@code CompactLinkedHashSet} containing those elements (minus duplicates) */
public static <E> CompactLinkedHashSet<E> create(E... elements) { CompactLinkedHashSet<E> set = createWithExpectedSize(elements.length); Collections.addAll(set, elements); return set; }
Creates a CompactLinkedHashSet instance, with a high enough "initial capacity" that it should hold expectedSize elements without rebuilding internal data structures.
Params:
  • expectedSize – the number of elements you expect to add to the returned set
Throws:
Returns:a new, empty CompactLinkedHashSet with enough capacity to hold expectedSize elements without resizing
/** * Creates a {@code CompactLinkedHashSet} instance, with a high enough "initial capacity" that it * <i>should</i> hold {@code expectedSize} elements without rebuilding internal data structures. * * @param expectedSize the number of elements you expect to add to the returned set * @return a new, empty {@code CompactLinkedHashSet} with enough capacity to hold {@code * expectedSize} elements without resizing * @throws IllegalArgumentException if {@code expectedSize} is negative */
public static <E> CompactLinkedHashSet<E> createWithExpectedSize(int expectedSize) { return new CompactLinkedHashSet<E>(expectedSize); } private static final int ENDPOINT = -2; // TODO(user): predecessors and successors should be collocated (reducing cache misses). // Might also explore collocating all of [hash, next, predecessor, succesor] fields of an // entry in a *single* long[], though that reduces the maximum size of the set by a factor of 2
Pointer to the predecessor of an entry in insertion order. ENDPOINT indicates a node is the first node in insertion order; all values at indices ≥ CompactHashSet.size() are UNSET.
/** * Pointer to the predecessor of an entry in insertion order. ENDPOINT indicates a node is the * first node in insertion order; all values at indices ≥ {@link #size()} are UNSET. */
private transient int @MonotonicNonNull [] predecessor;
Pointer to the successor of an entry in insertion order. ENDPOINT indicates a node is the last node in insertion order; all values at indices ≥ CompactHashSet.size() are UNSET.
/** * Pointer to the successor of an entry in insertion order. ENDPOINT indicates a node is the last * node in insertion order; all values at indices ≥ {@link #size()} are UNSET. */
private transient int @MonotonicNonNull [] successor; private transient int firstEntry; private transient int lastEntry; CompactLinkedHashSet() { super(); } CompactLinkedHashSet(int expectedSize) { super(expectedSize); } @Override void init(int expectedSize, float loadFactor) { super.init(expectedSize, loadFactor); this.predecessor = new int[expectedSize]; this.successor = new int[expectedSize]; Arrays.fill(predecessor, UNSET); Arrays.fill(successor, UNSET); firstEntry = ENDPOINT; lastEntry = ENDPOINT; } private void succeeds(int pred, int succ) { if (pred == ENDPOINT) { firstEntry = succ; } else { successor[pred] = succ; } if (succ == ENDPOINT) { lastEntry = pred; } else { predecessor[succ] = pred; } } @Override void insertEntry(int entryIndex, E object, int hash) { super.insertEntry(entryIndex, object, hash); succeeds(lastEntry, entryIndex); succeeds(entryIndex, ENDPOINT); } @Override void moveEntry(int dstIndex) { int srcIndex = size() - 1; super.moveEntry(dstIndex); succeeds(predecessor[dstIndex], successor[dstIndex]); if (srcIndex != dstIndex) { succeeds(predecessor[srcIndex], dstIndex); succeeds(dstIndex, successor[srcIndex]); } predecessor[srcIndex] = UNSET; successor[srcIndex] = UNSET; } @Override public void clear() { super.clear(); firstEntry = ENDPOINT; lastEntry = ENDPOINT; Arrays.fill(predecessor, UNSET); Arrays.fill(successor, UNSET); } @Override void resizeEntries(int newCapacity) { super.resizeEntries(newCapacity); int oldCapacity = predecessor.length; predecessor = Arrays.copyOf(predecessor, newCapacity); successor = Arrays.copyOf(successor, newCapacity); if (oldCapacity < newCapacity) { Arrays.fill(predecessor, oldCapacity, newCapacity, UNSET); Arrays.fill(successor, oldCapacity, newCapacity, UNSET); } } @Override public Object[] toArray() { return ObjectArrays.toArrayImpl(this); } @Override public <T> T[] toArray(T[] a) { return ObjectArrays.toArrayImpl(this, a); } @Override int firstEntryIndex() { return firstEntry; } @Override int adjustAfterRemove(int indexBeforeRemove, int indexRemoved) { return (indexBeforeRemove == size()) ? indexRemoved : indexBeforeRemove; } @Override int getSuccessor(int entryIndex) { return successor[entryIndex]; } @Override public Spliterator<E> spliterator() { return Spliterators.spliterator(this, Spliterator.ORDERED | Spliterator.DISTINCT); } @Override public void forEach(Consumer<? super E> action) { checkNotNull(action); for (int i = firstEntry; i != ENDPOINT; i = successor[i]) { action.accept((E) elements[i]); } } }