/*
 * Copyright (C) 2012 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.collect.CollectPreconditions.checkRemove;
import static com.google.common.collect.Hashing.smearedHash;

import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Objects;
import com.google.common.base.Preconditions;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.AbstractSet;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.Consumer;
import org.checkerframework.checker.nullness.qual.MonotonicNonNull;
import org.checkerframework.checker.nullness.qual.Nullable;

CompactHashSet is an implementation of a Set. All optional operations (adding and removing) are supported. The elements can be any objects.

contains(x), add(x) and remove(x), are all (expected and amortized) constant time operations. Expected in the hashtable sense (depends on the hash function doing a good job of distributing the elements to the buckets to a distribution not far from uniform), and amortized since some operations can trigger a hash table resize.

Unlike java.util.HashSet, iteration is only proportional to the actual size(), which is optimal, and not the size of the internal hashtable, which could be much larger than size(). Furthermore, this structure only depends on a fixed number of arrays; add(x) operations do not create objects for the garbage collector to deal with, and for every element added, the garbage collector will have to traverse 1.5 references on average, in the marking phase, not 5.0 as in java.util.HashSet.

If there are no removals, then iteration order is the same as insertion order. Any removal invalidates any ordering guarantees.

This class should not be assumed to be universally superior to java.util.HashSet. Generally speaking, this class reduces object allocation and memory consumption at the price of moderately increased constant factors of CPU. Only use this class when there is a specific reason to prioritize memory over CPU.

Author:Dimitris Andreou
/** * CompactHashSet is an implementation of a Set. All optional operations (adding and removing) are * supported. The elements can be any objects. * * <p>{@code contains(x)}, {@code add(x)} and {@code remove(x)}, are all (expected and amortized) * constant time operations. Expected in the hashtable sense (depends on the hash function doing a * good job of distributing the elements to the buckets to a distribution not far from uniform), and * amortized since some operations can trigger a hash table resize. * * <p>Unlike {@code java.util.HashSet}, iteration is only proportional to the actual {@code size()}, * which is optimal, and <i>not</i> the size of the internal hashtable, which could be much larger * than {@code size()}. Furthermore, this structure only depends on a fixed number of arrays; {@code * add(x)} operations <i>do not</i> create objects for the garbage collector to deal with, and for * every element added, the garbage collector will have to traverse {@code 1.5} references on * average, in the marking phase, not {@code 5.0} as in {@code java.util.HashSet}. * * <p>If there are no removals, then {@link #iterator iteration} order is the same as insertion * order. Any removal invalidates any ordering guarantees. * * <p>This class should not be assumed to be universally superior to {@code java.util.HashSet}. * Generally speaking, this class reduces object allocation and memory consumption at the price of * moderately increased constant factors of CPU. Only use this class when there is a specific reason * to prioritize memory over CPU. * * @author Dimitris Andreou */
@GwtIncompatible // not worth using in GWT for now class CompactHashSet<E> extends AbstractSet<E> implements Serializable { // TODO(user): cache all field accesses in local vars
Creates an empty CompactHashSet instance.
/** Creates an empty {@code CompactHashSet} instance. */
public static <E> CompactHashSet<E> create() { return new CompactHashSet<E>(); }
Creates a mutable CompactHashSet instance containing the elements of the given collection in unspecified order.
Params:
  • collection – the elements that the set should contain
Returns:a new CompactHashSet containing those elements (minus duplicates)
/** * Creates a <i>mutable</i> {@code CompactHashSet} instance containing the elements of the given * collection in unspecified order. * * @param collection the elements that the set should contain * @return a new {@code CompactHashSet} containing those elements (minus duplicates) */
public static <E> CompactHashSet<E> create(Collection<? extends E> collection) { CompactHashSet<E> set = createWithExpectedSize(collection.size()); set.addAll(collection); return set; }
Creates a mutable CompactHashSet instance containing the given elements in unspecified order.
Params:
  • elements – the elements that the set should contain
Returns:a new CompactHashSet containing those elements (minus duplicates)
/** * Creates a <i>mutable</i> {@code CompactHashSet} instance containing the given elements in * unspecified order. * * @param elements the elements that the set should contain * @return a new {@code CompactHashSet} containing those elements (minus duplicates) */
public static <E> CompactHashSet<E> create(E... elements) { CompactHashSet<E> set = createWithExpectedSize(elements.length); Collections.addAll(set, elements); return set; }
Creates a CompactHashSet instance, with a high enough "initial capacity" that it should hold expectedSize elements without growth.
Params:
  • expectedSize – the number of elements you expect to add to the returned set
Throws:
Returns:a new, empty CompactHashSet with enough capacity to hold expectedSize elements without resizing
/** * Creates a {@code CompactHashSet} instance, with a high enough "initial capacity" that it * <i>should</i> hold {@code expectedSize} elements without growth. * * @param expectedSize the number of elements you expect to add to the returned set * @return a new, empty {@code CompactHashSet} with enough capacity to hold {@code expectedSize} * elements without resizing * @throws IllegalArgumentException if {@code expectedSize} is negative */
public static <E> CompactHashSet<E> createWithExpectedSize(int expectedSize) { return new CompactHashSet<E>(expectedSize); } private static final int MAXIMUM_CAPACITY = 1 << 30; // TODO(user): decide, and inline, load factor. 0.75? private static final float DEFAULT_LOAD_FACTOR = 1.0f;
Bitmask that selects the low 32 bits.
/** Bitmask that selects the low 32 bits. */
private static final long NEXT_MASK = (1L << 32) - 1;
Bitmask that selects the high 32 bits.
/** Bitmask that selects the high 32 bits. */
private static final long HASH_MASK = ~NEXT_MASK; // TODO(user): decide default size private static final int DEFAULT_SIZE = 3; static final int UNSET = -1;
The hashtable. Its values are indexes to both the elements and entries arrays.

Currently, the UNSET value means "null pointer", and any non negative value x is the actual index.

Its size must be a power of two.

/** * The hashtable. Its values are indexes to both the elements and entries arrays. * * <p>Currently, the UNSET value means "null pointer", and any non negative value x is the actual * index. * * <p>Its size must be a power of two. */
private transient int @MonotonicNonNull [] table;
Contains the logical entries, in the range of [0, size()). The high 32 bits of each long is the smeared hash of the element, whereas the low 32 bits is the "next" pointer (pointing to the next entry in the bucket chain). The pointers in [size(), entries.length) are all "null" (UNSET).
/** * Contains the logical entries, in the range of [0, size()). The high 32 bits of each long is the * smeared hash of the element, whereas the low 32 bits is the "next" pointer (pointing to the * next entry in the bucket chain). The pointers in [size(), entries.length) are all "null" * (UNSET). */
private transient long @MonotonicNonNull [] entries;
The elements contained in the set, in the range of [0, size()).
/** The elements contained in the set, in the range of [0, size()). */
transient Object @MonotonicNonNull [] elements;
The load factor.
/** The load factor. */
transient float loadFactor;
Keeps track of modifications of this set, to make it possible to throw ConcurrentModificationException in the iterator. Note that we choose not to make this volatile, so we do less of a "best effort" to track such errors, for better performance.
/** * Keeps track of modifications of this set, to make it possible to throw * ConcurrentModificationException in the iterator. Note that we choose not to make this volatile, * so we do less of a "best effort" to track such errors, for better performance. */
transient int modCount;
When we have this many elements, resize the hashtable.
/** When we have this many elements, resize the hashtable. */
private transient int threshold;
The number of elements contained in the set.
/** The number of elements contained in the set. */
private transient int size;
Constructs a new empty instance of CompactHashSet.
/** Constructs a new empty instance of {@code CompactHashSet}. */
CompactHashSet() { init(DEFAULT_SIZE, DEFAULT_LOAD_FACTOR); }
Constructs a new instance of CompactHashSet with the specified capacity.
Params:
  • expectedSize – the initial capacity of this CompactHashSet.
/** * Constructs a new instance of {@code CompactHashSet} with the specified capacity. * * @param expectedSize the initial capacity of this {@code CompactHashSet}. */
CompactHashSet(int expectedSize) { init(expectedSize, DEFAULT_LOAD_FACTOR); }
Pseudoconstructor for serialization support.
/** Pseudoconstructor for serialization support. */
void init(int expectedSize, float loadFactor) { Preconditions.checkArgument(expectedSize >= 0, "Initial capacity must be non-negative"); Preconditions.checkArgument(loadFactor > 0, "Illegal load factor"); int buckets = Hashing.closedTableSize(expectedSize, loadFactor); this.table = newTable(buckets); this.loadFactor = loadFactor; this.elements = new Object[expectedSize]; this.entries = newEntries(expectedSize); this.threshold = Math.max(1, (int) (buckets * loadFactor)); } private static int[] newTable(int size) { int[] array = new int[size]; Arrays.fill(array, UNSET); return array; } private static long[] newEntries(int size) { long[] array = new long[size]; Arrays.fill(array, UNSET); return array; } private static int getHash(long entry) { return (int) (entry >>> 32); }
Returns the index, or UNSET if the pointer is "null"
/** Returns the index, or UNSET if the pointer is "null" */
private static int getNext(long entry) { return (int) entry; }
Returns a new entry value by changing the "next" index of an existing entry
/** Returns a new entry value by changing the "next" index of an existing entry */
private static long swapNext(long entry, int newNext) { return (HASH_MASK & entry) | (NEXT_MASK & newNext); } private int hashTableMask() { return table.length - 1; } @CanIgnoreReturnValue @Override public boolean add(@Nullable E object) { long[] entries = this.entries; Object[] elements = this.elements; int hash = smearedHash(object); int tableIndex = hash & hashTableMask(); int newEntryIndex = this.size; // current size, and pointer to the entry to be appended int next = table[tableIndex]; if (next == UNSET) { // uninitialized bucket table[tableIndex] = newEntryIndex; } else { int last; long entry; do { last = next; entry = entries[next]; if (getHash(entry) == hash && Objects.equal(object, elements[next])) { return false; } next = getNext(entry); } while (next != UNSET); entries[last] = swapNext(entry, newEntryIndex); } if (newEntryIndex == Integer.MAX_VALUE) { throw new IllegalStateException("Cannot contain more than Integer.MAX_VALUE elements!"); } int newSize = newEntryIndex + 1; resizeMeMaybe(newSize); insertEntry(newEntryIndex, object, hash); this.size = newSize; if (newEntryIndex >= threshold) { resizeTable(2 * table.length); } modCount++; return true; }
Creates a fresh entry with the specified object at the specified position in the entry arrays.
/** * Creates a fresh entry with the specified object at the specified position in the entry arrays. */
void insertEntry(int entryIndex, E object, int hash) { this.entries[entryIndex] = ((long) hash << 32) | (NEXT_MASK & UNSET); this.elements[entryIndex] = object; }
Returns currentSize + 1, after resizing the entries storage if necessary.
/** Returns currentSize + 1, after resizing the entries storage if necessary. */
private void resizeMeMaybe(int newSize) { int entriesSize = entries.length; if (newSize > entriesSize) { int newCapacity = entriesSize + Math.max(1, entriesSize >>> 1); if (newCapacity < 0) { newCapacity = Integer.MAX_VALUE; } if (newCapacity != entriesSize) { resizeEntries(newCapacity); } } }
Resizes the internal entries array to the specified capacity, which may be greater or less than the current capacity.
/** * Resizes the internal entries array to the specified capacity, which may be greater or less than * the current capacity. */
void resizeEntries(int newCapacity) { this.elements = Arrays.copyOf(elements, newCapacity); long[] entries = this.entries; int oldSize = entries.length; entries = Arrays.copyOf(entries, newCapacity); if (newCapacity > oldSize) { Arrays.fill(entries, oldSize, newCapacity, UNSET); } this.entries = entries; } private void resizeTable(int newCapacity) { // newCapacity always a power of two int[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } int newThreshold = 1 + (int) (newCapacity * loadFactor); int[] newTable = newTable(newCapacity); long[] entries = this.entries; int mask = newTable.length - 1; for (int i = 0; i < size; i++) { long oldEntry = entries[i]; int hash = getHash(oldEntry); int tableIndex = hash & mask; int next = newTable[tableIndex]; newTable[tableIndex] = i; entries[i] = ((long) hash << 32) | (NEXT_MASK & next); } this.threshold = newThreshold; this.table = newTable; } @Override public boolean contains(@Nullable Object object) { int hash = smearedHash(object); int next = table[hash & hashTableMask()]; while (next != UNSET) { long entry = entries[next]; if (getHash(entry) == hash && Objects.equal(object, elements[next])) { return true; } next = getNext(entry); } return false; } @CanIgnoreReturnValue @Override public boolean remove(@Nullable Object object) { return remove(object, smearedHash(object)); } @CanIgnoreReturnValue private boolean remove(Object object, int hash) { int tableIndex = hash & hashTableMask(); int next = table[tableIndex]; if (next == UNSET) { return false; } int last = UNSET; do { if (getHash(entries[next]) == hash && Objects.equal(object, elements[next])) { if (last == UNSET) { // we need to update the root link from table[] table[tableIndex] = getNext(entries[next]); } else { // we need to update the link from the chain entries[last] = swapNext(entries[last], getNext(entries[next])); } moveEntry(next); size--; modCount++; return true; } last = next; next = getNext(entries[next]); } while (next != UNSET); return false; }
Moves the last entry in the entry array into dstIndex, and nulls out its old position.
/** * Moves the last entry in the entry array into {@code dstIndex}, and nulls out its old position. */
void moveEntry(int dstIndex) { int srcIndex = size() - 1; if (dstIndex < srcIndex) { // move last entry to deleted spot elements[dstIndex] = elements[srcIndex]; elements[srcIndex] = null; // move the last entry to the removed spot, just like we moved the element long lastEntry = entries[srcIndex]; entries[dstIndex] = lastEntry; entries[srcIndex] = UNSET; // also need to update whoever's "next" pointer was pointing to the last entry place // reusing "tableIndex" and "next"; these variables were no longer needed int tableIndex = getHash(lastEntry) & hashTableMask(); int lastNext = table[tableIndex]; if (lastNext == srcIndex) { // we need to update the root pointer table[tableIndex] = dstIndex; } else { // we need to update a pointer in an entry int previous; long entry; do { previous = lastNext; lastNext = getNext(entry = entries[lastNext]); } while (lastNext != srcIndex); // here, entries[previous] points to the old entry location; update it entries[previous] = swapNext(entry, dstIndex); } } else { elements[dstIndex] = null; entries[dstIndex] = UNSET; } } int firstEntryIndex() { return isEmpty() ? -1 : 0; } int getSuccessor(int entryIndex) { return (entryIndex + 1 < size) ? entryIndex + 1 : -1; }
Updates the index an iterator is pointing to after a call to remove: returns the index of the entry that should be looked at after a removal on indexRemoved, with indexBeforeRemove as the index that *was* the next entry that would be looked at.
/** * Updates the index an iterator is pointing to after a call to remove: returns the index of the * entry that should be looked at after a removal on indexRemoved, with indexBeforeRemove as the * index that *was* the next entry that would be looked at. */
int adjustAfterRemove(int indexBeforeRemove, @SuppressWarnings("unused") int indexRemoved) { return indexBeforeRemove - 1; } @Override public Iterator<E> iterator() { return new Iterator<E>() { int expectedModCount = modCount; int index = firstEntryIndex(); int indexToRemove = -1; @Override public boolean hasNext() { return index >= 0; } @Override @SuppressWarnings("unchecked") public E next() { checkForConcurrentModification(); if (!hasNext()) { throw new NoSuchElementException(); } indexToRemove = index; E result = (E) elements[index]; index = getSuccessor(index); return result; } @Override public void remove() { checkForConcurrentModification(); checkRemove(indexToRemove >= 0); expectedModCount++; CompactHashSet.this.remove(elements[indexToRemove], getHash(entries[indexToRemove])); index = adjustAfterRemove(index, indexToRemove); indexToRemove = -1; } private void checkForConcurrentModification() { if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } }; } @Override public Spliterator<E> spliterator() { return Spliterators.spliterator(elements, 0, size, Spliterator.DISTINCT | Spliterator.ORDERED); } @Override public void forEach(Consumer<? super E> action) { checkNotNull(action); for (int i = 0; i < size; i++) { action.accept((E) elements[i]); } } @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; } @Override public Object[] toArray() { return Arrays.copyOf(elements, size); } @CanIgnoreReturnValue @Override public <T> T[] toArray(T[] a) { return ObjectArrays.toArrayImpl(elements, 0, size, a); }
Ensures that this CompactHashSet has the smallest representation in memory, given its current size.
/** * Ensures that this {@code CompactHashSet} has the smallest representation in memory, given its * current size. */
public void trimToSize() { int size = this.size; if (size < entries.length) { resizeEntries(size); } // size / loadFactor gives the table size of the appropriate load factor, // but that may not be a power of two. We floor it to a power of two by // keeping its highest bit. But the smaller table may have a load factor // larger than what we want; then we want to go to the next power of 2 if we can int minimumTableSize = Math.max(1, Integer.highestOneBit((int) (size / loadFactor))); if (minimumTableSize < MAXIMUM_CAPACITY) { double load = (double) size / minimumTableSize; if (load > loadFactor) { minimumTableSize <<= 1; // increase to next power if possible } } if (minimumTableSize < table.length) { resizeTable(minimumTableSize); } } @Override public void clear() { modCount++; Arrays.fill(elements, 0, size, null); Arrays.fill(table, UNSET); Arrays.fill(entries, UNSET); this.size = 0; }
The serial form currently mimics Android's java.util.HashSet version, e.g. see http://omapzoom.org/?p=platform/libcore.git;a=blob;f=luni/src/main/java/java/util/HashSet.java
/** * The serial form currently mimics Android's java.util.HashSet version, e.g. see * http://omapzoom.org/?p=platform/libcore.git;a=blob;f=luni/src/main/java/java/util/HashSet.java */
private void writeObject(ObjectOutputStream stream) throws IOException { stream.defaultWriteObject(); stream.writeInt(size); for (E e : this) { stream.writeObject(e); } } @SuppressWarnings("unchecked") private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException { stream.defaultReadObject(); init(DEFAULT_SIZE, DEFAULT_LOAD_FACTOR); int elementCount = stream.readInt(); for (int i = elementCount; --i >= 0; ) { E element = (E) stream.readObject(); add(element); } } }