/*
 * Copyright (C) 2012 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.collect.CollectPreconditions.checkRemove;
import static com.google.common.collect.Hashing.smearedHash;

import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Objects;
import com.google.common.base.Preconditions;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import com.google.j2objc.annotations.WeakOuter;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.AbstractMap;
import java.util.Arrays;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import org.checkerframework.checker.nullness.qual.MonotonicNonNull;
import org.checkerframework.checker.nullness.qual.Nullable;

CompactHashMap is an implementation of a Map. All optional operations (put and remove) are supported. Null keys and values are supported.

containsKey(k), put(k, v) and remove(k) are all (expected and amortized) constant time operations. Expected in the hashtable sense (depends on the hash function doing a good job of distributing the elements to the buckets to a distribution not far from uniform), and amortized since some operations can trigger a hash table resize.

Unlike java.util.HashMap, iteration is only proportional to the actual size(), which is optimal, and not the size of the internal hashtable, which could be much larger than size(). Furthermore, this structure places significantly reduced load on the garbage collector by only using a constant number of internal objects.

If there are no removals, then iteration order for the entrySet, keySet, and CompactHashMap<K,V>.values views is the same as insertion order. Any removal invalidates any ordering guarantees.

This class should not be assumed to be universally superior to java.util.HashMap. Generally speaking, this class reduces object allocation and memory consumption at the price of moderately increased constant factors of CPU. Only use this class when there is a specific reason to prioritize memory over CPU.

Author:Louis Wasserman
/** * CompactHashMap is an implementation of a Map. All optional operations (put and remove) are * supported. Null keys and values are supported. * * <p>{@code containsKey(k)}, {@code put(k, v)} and {@code remove(k)} are all (expected and * amortized) constant time operations. Expected in the hashtable sense (depends on the hash * function doing a good job of distributing the elements to the buckets to a distribution not far * from uniform), and amortized since some operations can trigger a hash table resize. * * <p>Unlike {@code java.util.HashMap}, iteration is only proportional to the actual {@code size()}, * which is optimal, and <i>not</i> the size of the internal hashtable, which could be much larger * than {@code size()}. Furthermore, this structure places significantly reduced load on the garbage * collector by only using a constant number of internal objects. * * <p>If there are no removals, then iteration order for the {@link #entrySet}, {@link #keySet}, and * {@link #values} views is the same as insertion order. Any removal invalidates any ordering * guarantees. * * <p>This class should not be assumed to be universally superior to {@code java.util.HashMap}. * Generally speaking, this class reduces object allocation and memory consumption at the price of * moderately increased constant factors of CPU. Only use this class when there is a specific reason * to prioritize memory over CPU. * * @author Louis Wasserman */
@GwtIncompatible // not worth using in GWT for now class CompactHashMap<K, V> extends AbstractMap<K, V> implements Serializable { /* * TODO: Make this a drop-in replacement for j.u. versions, actually drop them in, and test the * world. Figure out what sort of space-time tradeoff we're actually going to get here with the * *Map variants. Followon optimizations, such as using 16-bit indices for small collections, will * take more work to implement. This class is particularly hard to benchmark, because the benefit * is not only in less allocation, but also having the GC do less work to scan the heap because of * fewer references, which is particularly hard to quantify. */
Creates an empty CompactHashMap instance.
/** Creates an empty {@code CompactHashMap} instance. */
public static <K, V> CompactHashMap<K, V> create() { return new CompactHashMap<>(); }
Creates a CompactHashMap instance, with a high enough "initial capacity" that it should hold expectedSize elements without growth.
Params:
  • expectedSize – the number of elements you expect to add to the returned set
Throws:
Returns:a new, empty CompactHashMap with enough capacity to hold expectedSize elements without resizing
/** * Creates a {@code CompactHashMap} instance, with a high enough "initial capacity" that it * <i>should</i> hold {@code expectedSize} elements without growth. * * @param expectedSize the number of elements you expect to add to the returned set * @return a new, empty {@code CompactHashMap} with enough capacity to hold {@code expectedSize} * elements without resizing * @throws IllegalArgumentException if {@code expectedSize} is negative */
public static <K, V> CompactHashMap<K, V> createWithExpectedSize(int expectedSize) { return new CompactHashMap<>(expectedSize); } private static final int MAXIMUM_CAPACITY = 1 << 30; // TODO(user): decide, and inline, load factor. 0.75? static final float DEFAULT_LOAD_FACTOR = 1.0f;
Bitmask that selects the low 32 bits.
/** Bitmask that selects the low 32 bits. */
private static final long NEXT_MASK = (1L << 32) - 1;
Bitmask that selects the high 32 bits.
/** Bitmask that selects the high 32 bits. */
private static final long HASH_MASK = ~NEXT_MASK; // TODO(user): decide default size static final int DEFAULT_SIZE = 3; // used to indicate blank table entries static final int UNSET = -1;
The hashtable. Its values are indexes to the keys, values, and entries arrays.

Currently, the UNSET value means "null pointer", and any non negative value x is the actual index.

Its size must be a power of two.

/** * The hashtable. Its values are indexes to the keys, values, and entries arrays. * * <p>Currently, the UNSET value means "null pointer", and any non negative value x is the actual * index. * * <p>Its size must be a power of two. */
private transient int @MonotonicNonNull [] table;
Contains the logical entries, in the range of [0, size()). The high 32 bits of each long is the smeared hash of the element, whereas the low 32 bits is the "next" pointer (pointing to the next entry in the bucket chain). The pointers in [size(), entries.length) are all "null" (UNSET).
/** * Contains the logical entries, in the range of [0, size()). The high 32 bits of each long is the * smeared hash of the element, whereas the low 32 bits is the "next" pointer (pointing to the * next entry in the bucket chain). The pointers in [size(), entries.length) are all "null" * (UNSET). */
@VisibleForTesting transient long @MonotonicNonNull [] entries;
The keys of the entries in the map, in the range of [0, size()). The keys in [size(), keys.length) are all null.
/** * The keys of the entries in the map, in the range of [0, size()). The keys in [size(), * keys.length) are all {@code null}. */
@VisibleForTesting transient Object @MonotonicNonNull [] keys;
The values of the entries in the map, in the range of [0, size()). The values in [size(), values.length) are all null.
/** * The values of the entries in the map, in the range of [0, size()). The values in [size(), * values.length) are all {@code null}. */
@VisibleForTesting transient Object @MonotonicNonNull [] values;
The load factor.
/** The load factor. */
transient float loadFactor;
Keeps track of modifications of this set, to make it possible to throw ConcurrentModificationException in the iterator. Note that we choose not to make this volatile, so we do less of a "best effort" to track such errors, for better performance.
/** * Keeps track of modifications of this set, to make it possible to throw * ConcurrentModificationException in the iterator. Note that we choose not to make this volatile, * so we do less of a "best effort" to track such errors, for better performance. */
transient int modCount;
When we have this many elements, resize the hashtable.
/** When we have this many elements, resize the hashtable. */
private transient int threshold;
The number of elements contained in the set.
/** The number of elements contained in the set. */
private transient int size;
Constructs a new empty instance of CompactHashMap.
/** Constructs a new empty instance of {@code CompactHashMap}. */
CompactHashMap() { init(DEFAULT_SIZE, DEFAULT_LOAD_FACTOR); }
Constructs a new instance of CompactHashMap with the specified capacity.
Params:
  • capacity – the initial capacity of this CompactHashMap.
/** * Constructs a new instance of {@code CompactHashMap} with the specified capacity. * * @param capacity the initial capacity of this {@code CompactHashMap}. */
CompactHashMap(int capacity) { this(capacity, DEFAULT_LOAD_FACTOR); } CompactHashMap(int expectedSize, float loadFactor) { init(expectedSize, loadFactor); }
Pseudoconstructor for serialization support.
/** Pseudoconstructor for serialization support. */
void init(int expectedSize, float loadFactor) { Preconditions.checkArgument(expectedSize >= 0, "Initial capacity must be non-negative"); Preconditions.checkArgument(loadFactor > 0, "Illegal load factor"); int buckets = Hashing.closedTableSize(expectedSize, loadFactor); this.table = newTable(buckets); this.loadFactor = loadFactor; this.keys = new Object[expectedSize]; this.values = new Object[expectedSize]; this.entries = newEntries(expectedSize); this.threshold = Math.max(1, (int) (buckets * loadFactor)); } private static int[] newTable(int size) { int[] array = new int[size]; Arrays.fill(array, UNSET); return array; } private static long[] newEntries(int size) { long[] array = new long[size]; Arrays.fill(array, UNSET); return array; } private int hashTableMask() { return table.length - 1; } private static int getHash(long entry) { return (int) (entry >>> 32); }
Returns the index, or UNSET if the pointer is "null"
/** Returns the index, or UNSET if the pointer is "null" */
private static int getNext(long entry) { return (int) entry; }
Returns a new entry value by changing the "next" index of an existing entry
/** Returns a new entry value by changing the "next" index of an existing entry */
private static long swapNext(long entry, int newNext) { return (HASH_MASK & entry) | (NEXT_MASK & newNext); }
Mark an access of the specified entry. Used only in CompactLinkedHashMap for LRU ordering.
/** * Mark an access of the specified entry. Used only in {@code CompactLinkedHashMap} for LRU * ordering. */
void accessEntry(int index) { // no-op by default } @CanIgnoreReturnValue @Override public @Nullable V put(@Nullable K key, @Nullable V value) { long[] entries = this.entries; Object[] keys = this.keys; Object[] values = this.values; int hash = smearedHash(key); int tableIndex = hash & hashTableMask(); int newEntryIndex = this.size; // current size, and pointer to the entry to be appended int next = table[tableIndex]; if (next == UNSET) { table[tableIndex] = newEntryIndex; } else { int last; long entry; do { last = next; entry = entries[next]; if (getHash(entry) == hash && Objects.equal(key, keys[next])) { @SuppressWarnings("unchecked") // known to be a V @Nullable V oldValue = (V) values[next]; values[next] = value; accessEntry(next); return oldValue; } next = getNext(entry); } while (next != UNSET); entries[last] = swapNext(entry, newEntryIndex); } if (newEntryIndex == Integer.MAX_VALUE) { throw new IllegalStateException("Cannot contain more than Integer.MAX_VALUE elements!"); } int newSize = newEntryIndex + 1; resizeMeMaybe(newSize); insertEntry(newEntryIndex, key, value, hash); this.size = newSize; if (newEntryIndex >= threshold) { resizeTable(2 * table.length); } modCount++; return null; }
Creates a fresh entry with the specified object at the specified position in the entry arrays.
/** * Creates a fresh entry with the specified object at the specified position in the entry arrays. */
void insertEntry(int entryIndex, @Nullable K key, @Nullable V value, int hash) { this.entries[entryIndex] = ((long) hash << 32) | (NEXT_MASK & UNSET); this.keys[entryIndex] = key; this.values[entryIndex] = value; }
Returns currentSize + 1, after resizing the entries storage if necessary.
/** Returns currentSize + 1, after resizing the entries storage if necessary. */
private void resizeMeMaybe(int newSize) { int entriesSize = entries.length; if (newSize > entriesSize) { int newCapacity = entriesSize + Math.max(1, entriesSize >>> 1); if (newCapacity < 0) { newCapacity = Integer.MAX_VALUE; } if (newCapacity != entriesSize) { resizeEntries(newCapacity); } } }
Resizes the internal entries array to the specified capacity, which may be greater or less than the current capacity.
/** * Resizes the internal entries array to the specified capacity, which may be greater or less than * the current capacity. */
void resizeEntries(int newCapacity) { this.keys = Arrays.copyOf(keys, newCapacity); this.values = Arrays.copyOf(values, newCapacity); long[] entries = this.entries; int oldCapacity = entries.length; entries = Arrays.copyOf(entries, newCapacity); if (newCapacity > oldCapacity) { Arrays.fill(entries, oldCapacity, newCapacity, UNSET); } this.entries = entries; } private void resizeTable(int newCapacity) { // newCapacity always a power of two int[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } int newThreshold = 1 + (int) (newCapacity * loadFactor); int[] newTable = newTable(newCapacity); long[] entries = this.entries; int mask = newTable.length - 1; for (int i = 0; i < size; i++) { long oldEntry = entries[i]; int hash = getHash(oldEntry); int tableIndex = hash & mask; int next = newTable[tableIndex]; newTable[tableIndex] = i; entries[i] = ((long) hash << 32) | (NEXT_MASK & next); } this.threshold = newThreshold; this.table = newTable; } private int indexOf(@Nullable Object key) { int hash = smearedHash(key); int next = table[hash & hashTableMask()]; while (next != UNSET) { long entry = entries[next]; if (getHash(entry) == hash && Objects.equal(key, keys[next])) { return next; } next = getNext(entry); } return -1; } @Override public boolean containsKey(@Nullable Object key) { return indexOf(key) != -1; } @SuppressWarnings("unchecked") // values only contains Vs @Override public V get(@Nullable Object key) { int index = indexOf(key); accessEntry(index); return (index == -1) ? null : (V) values[index]; } @CanIgnoreReturnValue @Override public @Nullable V remove(@Nullable Object key) { return remove(key, smearedHash(key)); } private @Nullable V remove(@Nullable Object key, int hash) { int tableIndex = hash & hashTableMask(); int next = table[tableIndex]; if (next == UNSET) { // empty bucket return null; } int last = UNSET; do { if (getHash(entries[next]) == hash) { if (Objects.equal(key, keys[next])) { @SuppressWarnings("unchecked") // values only contains Vs @Nullable V oldValue = (V) values[next]; if (last == UNSET) { // we need to update the root link from table[] table[tableIndex] = getNext(entries[next]); } else { // we need to update the link from the chain entries[last] = swapNext(entries[last], getNext(entries[next])); } moveLastEntry(next); size--; modCount++; return oldValue; } } last = next; next = getNext(entries[next]); } while (next != UNSET); return null; } @CanIgnoreReturnValue private V removeEntry(int entryIndex) { return remove(keys[entryIndex], getHash(entries[entryIndex])); }
Moves the last entry in the entry array into dstIndex, and nulls out its old position.
/** * Moves the last entry in the entry array into {@code dstIndex}, and nulls out its old position. */
void moveLastEntry(int dstIndex) { int srcIndex = size() - 1; if (dstIndex < srcIndex) { // move last entry to deleted spot keys[dstIndex] = keys[srcIndex]; values[dstIndex] = values[srcIndex]; keys[srcIndex] = null; values[srcIndex] = null; // move the last entry to the removed spot, just like we moved the element long lastEntry = entries[srcIndex]; entries[dstIndex] = lastEntry; entries[srcIndex] = UNSET; // also need to update whoever's "next" pointer was pointing to the last entry place // reusing "tableIndex" and "next"; these variables were no longer needed int tableIndex = getHash(lastEntry) & hashTableMask(); int lastNext = table[tableIndex]; if (lastNext == srcIndex) { // we need to update the root pointer table[tableIndex] = dstIndex; } else { // we need to update a pointer in an entry int previous; long entry; do { previous = lastNext; lastNext = getNext(entry = entries[lastNext]); } while (lastNext != srcIndex); // here, entries[previous] points to the old entry location; update it entries[previous] = swapNext(entry, dstIndex); } } else { keys[dstIndex] = null; values[dstIndex] = null; entries[dstIndex] = UNSET; } } int firstEntryIndex() { return isEmpty() ? -1 : 0; } int getSuccessor(int entryIndex) { return (entryIndex + 1 < size) ? entryIndex + 1 : -1; }
Updates the index an iterator is pointing to after a call to remove: returns the index of the entry that should be looked at after a removal on indexRemoved, with indexBeforeRemove as the index that *was* the next entry that would be looked at.
/** * Updates the index an iterator is pointing to after a call to remove: returns the index of the * entry that should be looked at after a removal on indexRemoved, with indexBeforeRemove as the * index that *was* the next entry that would be looked at. */
int adjustAfterRemove(int indexBeforeRemove, @SuppressWarnings("unused") int indexRemoved) { return indexBeforeRemove - 1; } private abstract class Itr<T> implements Iterator<T> { int expectedModCount = modCount; int currentIndex = firstEntryIndex(); int indexToRemove = -1; @Override public boolean hasNext() { return currentIndex >= 0; } abstract T getOutput(int entry); @Override public T next() { checkForConcurrentModification(); if (!hasNext()) { throw new NoSuchElementException(); } indexToRemove = currentIndex; T result = getOutput(currentIndex); currentIndex = getSuccessor(currentIndex); return result; } @Override public void remove() { checkForConcurrentModification(); checkRemove(indexToRemove >= 0); expectedModCount++; removeEntry(indexToRemove); currentIndex = adjustAfterRemove(currentIndex, indexToRemove); indexToRemove = -1; } private void checkForConcurrentModification() { if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } } @Override public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { checkNotNull(function); for (int i = 0; i < size; i++) { values[i] = function.apply((K) keys[i], (V) values[i]); } } private transient @MonotonicNonNull Set<K> keySetView; @Override public Set<K> keySet() { return (keySetView == null) ? keySetView = createKeySet() : keySetView; } Set<K> createKeySet() { return new KeySetView(); } @WeakOuter class KeySetView extends Maps.KeySet<K, V> { KeySetView() { super(CompactHashMap.this); } @Override public Object[] toArray() { return ObjectArrays.copyAsObjectArray(keys, 0, size); } @Override public <T> T[] toArray(T[] a) { return ObjectArrays.toArrayImpl(keys, 0, size, a); } @Override public boolean remove(@Nullable Object o) { int index = indexOf(o); if (index == -1) { return false; } else { removeEntry(index); return true; } } @Override public Iterator<K> iterator() { return keySetIterator(); } @Override public Spliterator<K> spliterator() { return Spliterators.spliterator(keys, 0, size, Spliterator.DISTINCT | Spliterator.ORDERED); } @Override public void forEach(Consumer<? super K> action) { checkNotNull(action); for (int i = 0; i < size; i++) { action.accept((K) keys[i]); } } } Iterator<K> keySetIterator() { return new Itr<K>() { @SuppressWarnings("unchecked") // keys only contains Ks @Override K getOutput(int entry) { return (K) keys[entry]; } }; } @Override public void forEach(BiConsumer<? super K, ? super V> action) { checkNotNull(action); for (int i = 0; i < size; i++) { action.accept((K) keys[i], (V) values[i]); } } private transient @MonotonicNonNull Set<Entry<K, V>> entrySetView; @Override public Set<Entry<K, V>> entrySet() { return (entrySetView == null) ? entrySetView = createEntrySet() : entrySetView; } Set<Entry<K, V>> createEntrySet() { return new EntrySetView(); } @WeakOuter class EntrySetView extends Maps.EntrySet<K, V> { @Override Map<K, V> map() { return CompactHashMap.this; } @Override public Iterator<Entry<K, V>> iterator() { return entrySetIterator(); } @Override public Spliterator<Entry<K, V>> spliterator() { return CollectSpliterators.indexed( size, Spliterator.DISTINCT | Spliterator.ORDERED, MapEntry::new); } @Override public boolean contains(@Nullable Object o) { if (o instanceof Entry) { Entry<?, ?> entry = (Entry<?, ?>) o; int index = indexOf(entry.getKey()); return index != -1 && Objects.equal(values[index], entry.getValue()); } return false; } @Override public boolean remove(@Nullable Object o) { if (o instanceof Entry) { Entry<?, ?> entry = (Entry<?, ?>) o; int index = indexOf(entry.getKey()); if (index != -1 && Objects.equal(values[index], entry.getValue())) { removeEntry(index); return true; } } return false; } } Iterator<Entry<K, V>> entrySetIterator() { return new Itr<Entry<K, V>>() { @Override Entry<K, V> getOutput(int entry) { return new MapEntry(entry); } }; } final class MapEntry extends AbstractMapEntry<K, V> { private final @Nullable K key; private int lastKnownIndex; @SuppressWarnings("unchecked") // keys only contains Ks MapEntry(int index) { this.key = (K) keys[index]; this.lastKnownIndex = index; } @Override public K getKey() { return key; } private void updateLastKnownIndex() { if (lastKnownIndex == -1 || lastKnownIndex >= size() || !Objects.equal(key, keys[lastKnownIndex])) { lastKnownIndex = indexOf(key); } } @SuppressWarnings("unchecked") // values only contains Vs @Override public V getValue() { updateLastKnownIndex(); return (lastKnownIndex == -1) ? null : (V) values[lastKnownIndex]; } @SuppressWarnings("unchecked") // values only contains Vs @Override public V setValue(V value) { updateLastKnownIndex(); if (lastKnownIndex == -1) { put(key, value); return null; } else { V old = (V) values[lastKnownIndex]; values[lastKnownIndex] = value; return old; } } } @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; } @Override public boolean containsValue(@Nullable Object value) { for (int i = 0; i < size; i++) { if (Objects.equal(value, values[i])) { return true; } } return false; } private transient @MonotonicNonNull Collection<V> valuesView; @Override public Collection<V> values() { return (valuesView == null) ? valuesView = createValues() : valuesView; } Collection<V> createValues() { return new ValuesView(); } @WeakOuter class ValuesView extends Maps.Values<K, V> { ValuesView() { super(CompactHashMap.this); } @Override public Iterator<V> iterator() { return valuesIterator(); } @Override public void forEach(Consumer<? super V> action) { checkNotNull(action); for (int i = 0; i < size; i++) { action.accept((V) values[i]); } } @Override public Spliterator<V> spliterator() { return Spliterators.spliterator(values, 0, size, Spliterator.ORDERED); } @Override public Object[] toArray() { return ObjectArrays.copyAsObjectArray(values, 0, size); } @Override public <T> T[] toArray(T[] a) { return ObjectArrays.toArrayImpl(values, 0, size, a); } } Iterator<V> valuesIterator() { return new Itr<V>() { @SuppressWarnings("unchecked") // values only contains Vs @Override V getOutput(int entry) { return (V) values[entry]; } }; }
Ensures that this CompactHashMap has the smallest representation in memory, given its current size.
/** * Ensures that this {@code CompactHashMap} has the smallest representation in memory, given its * current size. */
public void trimToSize() { int size = this.size; if (size < entries.length) { resizeEntries(size); } // size / loadFactor gives the table size of the appropriate load factor, // but that may not be a power of two. We floor it to a power of two by // keeping its highest bit. But the smaller table may have a load factor // larger than what we want; then we want to go to the next power of 2 if we can int minimumTableSize = Math.max(1, Integer.highestOneBit((int) (size / loadFactor))); if (minimumTableSize < MAXIMUM_CAPACITY) { double load = (double) size / minimumTableSize; if (load > loadFactor) { minimumTableSize <<= 1; // increase to next power if possible } } if (minimumTableSize < table.length) { resizeTable(minimumTableSize); } } @Override public void clear() { modCount++; Arrays.fill(keys, 0, size, null); Arrays.fill(values, 0, size, null); Arrays.fill(table, UNSET); Arrays.fill(entries, UNSET); this.size = 0; }
The serial form currently mimics Android's java.util.HashMap version, e.g. see http://omapzoom.org/?p=platform/libcore.git;a=blob;f=luni/src/main/java/java/util/HashMap.java
/** * The serial form currently mimics Android's java.util.HashMap version, e.g. see * http://omapzoom.org/?p=platform/libcore.git;a=blob;f=luni/src/main/java/java/util/HashMap.java */
private void writeObject(ObjectOutputStream stream) throws IOException { stream.defaultWriteObject(); stream.writeInt(size); for (int i = 0; i < size; i++) { stream.writeObject(keys[i]); stream.writeObject(values[i]); } } @SuppressWarnings("unchecked") private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException { stream.defaultReadObject(); init(DEFAULT_SIZE, DEFAULT_LOAD_FACTOR); int elementCount = stream.readInt(); for (int i = elementCount; --i >= 0; ) { K key = (K) stream.readObject(); V value = (V) stream.readObject(); put(key, value); } } }