/*
 * Copyright (C) 2009 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.primitives;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkPositionIndexes;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import java.nio.ByteOrder;
import java.util.Arrays;
import java.util.Comparator;
import sun.misc.Unsafe;

Static utility methods pertaining to byte primitives that interpret values as unsigned (that is, any negative value b is treated as the positive value 256 + b). The corresponding methods that treat the values as signed are found in SignedBytes, and the methods for which signedness is not an issue are in Bytes.

See the Guava User Guide article on primitive utilities.

Author:Kevin Bourrillion, Martin Buchholz, Hiroshi Yamauchi, Louis Wasserman
Since:1.0
/** * Static utility methods pertaining to {@code byte} primitives that interpret values as * <i>unsigned</i> (that is, any negative value {@code b} is treated as the positive value {@code * 256 + b}). The corresponding methods that treat the values as signed are found in {@link * SignedBytes}, and the methods for which signedness is not an issue are in {@link Bytes}. * * <p>See the Guava User Guide article on <a * href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>. * * @author Kevin Bourrillion * @author Martin Buchholz * @author Hiroshi Yamauchi * @author Louis Wasserman * @since 1.0 */
@GwtIncompatible public final class UnsignedBytes { private UnsignedBytes() {}
The largest power of two that can be represented as an unsigned byte.
Since:10.0
/** * The largest power of two that can be represented as an unsigned {@code byte}. * * @since 10.0 */
public static final byte MAX_POWER_OF_TWO = (byte) 0x80;
The largest value that fits into an unsigned byte.
Since:13.0
/** * The largest value that fits into an unsigned byte. * * @since 13.0 */
public static final byte MAX_VALUE = (byte) 0xFF; private static final int UNSIGNED_MASK = 0xFF;
Returns the value of the given byte as an integer, when treated as unsigned. That is, returns value + 256 if value is negative; value itself otherwise.

Java 8 users: use Byte.toUnsignedInt(byte) instead.

Since:6.0
/** * Returns the value of the given byte as an integer, when treated as unsigned. That is, returns * {@code value + 256} if {@code value} is negative; {@code value} itself otherwise. * * <p><b>Java 8 users:</b> use {@link Byte#toUnsignedInt(byte)} instead. * * @since 6.0 */
public static int toInt(byte value) { return value & UNSIGNED_MASK; }
Returns the byte value that, when treated as unsigned, is equal to value, if possible.
Params:
  • value – a value between 0 and 255 inclusive
Throws:
Returns:the byte value that, when treated as unsigned, equals value
/** * Returns the {@code byte} value that, when treated as unsigned, is equal to {@code value}, if * possible. * * @param value a value between 0 and 255 inclusive * @return the {@code byte} value that, when treated as unsigned, equals {@code value} * @throws IllegalArgumentException if {@code value} is negative or greater than 255 */
@CanIgnoreReturnValue public static byte checkedCast(long value) { checkArgument(value >> Byte.SIZE == 0, "out of range: %s", value); return (byte) value; }
Returns the byte value that, when treated as unsigned, is nearest in value to value.
Params:
  • value – any long value
Returns:(byte) 255 if value >= 255, (byte) 0 if value <= 0, and value cast to byte otherwise
/** * Returns the {@code byte} value that, when treated as unsigned, is nearest in value to {@code * value}. * * @param value any {@code long} value * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if {@code value <= 0}, and * {@code value} cast to {@code byte} otherwise */
public static byte saturatedCast(long value) { if (value > toInt(MAX_VALUE)) { return MAX_VALUE; // -1 } if (value < 0) { return (byte) 0; } return (byte) value; }
Compares the two specified byte values, treating them as unsigned values between 0 and 255 inclusive. For example, (byte) -127 is considered greater than (byte) 127 because it is seen as having the value of positive 129.
Params:
  • a – the first byte to compare
  • b – the second byte to compare
Returns:a negative value if a is less than b; a positive value if a is greater than b; or zero if they are equal
/** * Compares the two specified {@code byte} values, treating them as unsigned values between 0 and * 255 inclusive. For example, {@code (byte) -127} is considered greater than {@code (byte) 127} * because it is seen as having the value of positive {@code 129}. * * @param a the first {@code byte} to compare * @param b the second {@code byte} to compare * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is * greater than {@code b}; or zero if they are equal */
public static int compare(byte a, byte b) { return toInt(a) - toInt(b); }
Returns the least value present in array.
Params:
  • array – a nonempty array of byte values
Throws:
Returns:the value present in array that is less than or equal to every other value in the array
/** * Returns the least value present in {@code array}. * * @param array a <i>nonempty</i> array of {@code byte} values * @return the value present in {@code array} that is less than or equal to every other value in * the array * @throws IllegalArgumentException if {@code array} is empty */
public static byte min(byte... array) { checkArgument(array.length > 0); int min = toInt(array[0]); for (int i = 1; i < array.length; i++) { int next = toInt(array[i]); if (next < min) { min = next; } } return (byte) min; }
Returns the greatest value present in array.
Params:
  • array – a nonempty array of byte values
Throws:
Returns:the value present in array that is greater than or equal to every other value in the array
/** * Returns the greatest value present in {@code array}. * * @param array a <i>nonempty</i> array of {@code byte} values * @return the value present in {@code array} that is greater than or equal to every other value * in the array * @throws IllegalArgumentException if {@code array} is empty */
public static byte max(byte... array) { checkArgument(array.length > 0); int max = toInt(array[0]); for (int i = 1; i < array.length; i++) { int next = toInt(array[i]); if (next > max) { max = next; } } return (byte) max; }
Returns a string representation of x, where x is treated as unsigned.
Since:13.0
/** * Returns a string representation of x, where x is treated as unsigned. * * @since 13.0 */
@Beta public static String toString(byte x) { return toString(x, 10); }
Returns a string representation of x for the given radix, where x is treated as unsigned.
Params:
  • x – the value to convert to a string.
  • radix – the radix to use while working with x
Throws:
Since:13.0
/** * Returns a string representation of {@code x} for the given radix, where {@code x} is treated as * unsigned. * * @param x the value to convert to a string. * @param radix the radix to use while working with {@code x} * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX} * and {@link Character#MAX_RADIX}. * @since 13.0 */
@Beta public static String toString(byte x, int radix) { checkArgument( radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX, "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", radix); // Benchmarks indicate this is probably not worth optimizing. return Integer.toString(toInt(x), radix); }
Returns the unsigned byte value represented by the given decimal string.
Throws:
Since:13.0
/** * Returns the unsigned {@code byte} value represented by the given decimal string. * * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} * value * @throws NullPointerException if {@code string} is null (in contrast to {@link * Byte#parseByte(String)}) * @since 13.0 */
@Beta @CanIgnoreReturnValue public static byte parseUnsignedByte(String string) { return parseUnsignedByte(string, 10); }
Returns the unsigned byte value represented by a string with the given radix.
Params:
  • string – the string containing the unsigned byte representation to be parsed.
  • radix – the radix to use while parsing string
Throws:
Since:13.0
/** * Returns the unsigned {@code byte} value represented by a string with the given radix. * * @param string the string containing the unsigned {@code byte} representation to be parsed. * @param radix the radix to use while parsing {@code string} * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} with * the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} and {@link * Character#MAX_RADIX}. * @throws NullPointerException if {@code string} is null (in contrast to {@link * Byte#parseByte(String)}) * @since 13.0 */
@Beta @CanIgnoreReturnValue public static byte parseUnsignedByte(String string, int radix) { int parse = Integer.parseInt(checkNotNull(string), radix); // We need to throw a NumberFormatException, so we have to duplicate checkedCast. =( if (parse >> Byte.SIZE == 0) { return (byte) parse; } else { throw new NumberFormatException("out of range: " + parse); } }
Returns a string containing the supplied byte values separated by separator. For example, join(":", (byte) 1, (byte) 2, (byte) 255) returns the string "1:2:255".
Params:
  • separator – the text that should appear between consecutive values in the resulting string (but not at the start or end)
  • array – an array of byte values, possibly empty
/** * Returns a string containing the supplied {@code byte} values separated by {@code separator}. * For example, {@code join(":", (byte) 1, (byte) 2, (byte) 255)} returns the string {@code * "1:2:255"}. * * @param separator the text that should appear between consecutive values in the resulting string * (but not at the start or end) * @param array an array of {@code byte} values, possibly empty */
public static String join(String separator, byte... array) { checkNotNull(separator); if (array.length == 0) { return ""; } // For pre-sizing a builder, just get the right order of magnitude StringBuilder builder = new StringBuilder(array.length * (3 + separator.length())); builder.append(toInt(array[0])); for (int i = 1; i < array.length; i++) { builder.append(separator).append(toString(array[i])); } return builder.toString(); }
Returns a comparator that compares two byte arrays lexicographically. That is, it compares, using compare(byte, byte)), the first pair of values that follow any common prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For example, [] < [0x01] < [0x01, 0x7F] < [0x01, 0x80] < [0x02]. Values are treated as unsigned.

The returned comparator is inconsistent with Object.equals(Object) (since arrays support only identity equality), but it is consistent with Arrays.equals(byte[], byte[]).

Since:2.0
/** * Returns a comparator that compares two {@code byte} arrays <a * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it * compares, using {@link #compare(byte, byte)}), the first pair of values that follow any common * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For * example, {@code [] < [0x01] < [0x01, 0x7F] < [0x01, 0x80] < [0x02]}. Values are treated as * unsigned. * * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays * support only identity equality), but it is consistent with {@link * java.util.Arrays#equals(byte[], byte[])}. * * @since 2.0 */
public static Comparator<byte[]> lexicographicalComparator() { return LexicographicalComparatorHolder.BEST_COMPARATOR; } @VisibleForTesting static Comparator<byte[]> lexicographicalComparatorJavaImpl() { return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; }
Provides a lexicographical comparator implementation; either a Java implementation or a faster implementation based on Unsafe.

Uses reflection to gracefully fall back to the Java implementation if Unsafe isn't available.

/** * Provides a lexicographical comparator implementation; either a Java implementation or a faster * implementation based on {@link Unsafe}. * * <p>Uses reflection to gracefully fall back to the Java implementation if {@code Unsafe} isn't * available. */
@VisibleForTesting static class LexicographicalComparatorHolder { static final String UNSAFE_COMPARATOR_NAME = LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator(); @VisibleForTesting enum UnsafeComparator implements Comparator<byte[]> { INSTANCE; static final boolean BIG_ENDIAN = ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN); /* * The following static final fields exist for performance reasons. * * In UnsignedBytesBenchmark, accessing the following objects via static final fields is the * fastest (more than twice as fast as the Java implementation, vs ~1.5x with non-final static * fields, on x86_32) under the Hotspot server compiler. The reason is obviously that the * non-final fields need to be reloaded inside the loop. * * And, no, defining (final or not) local variables out of the loop still isn't as good * because the null check on the theUnsafe object remains inside the loop and * BYTE_ARRAY_BASE_OFFSET doesn't get constant-folded. * * The compiler can treat static final fields as compile-time constants and can constant-fold * them while (final or not) local variables are run time values. */ static final Unsafe theUnsafe = getUnsafe();
The offset to the first element in a byte array.
/** The offset to the first element in a byte array. */
static final int BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); static { // fall back to the safer pure java implementation unless we're in // a 64-bit JVM with an 8-byte aligned field offset. if (!("64".equals(System.getProperty("sun.arch.data.model")) && (BYTE_ARRAY_BASE_OFFSET % 8) == 0 // sanity check - this should never fail && theUnsafe.arrayIndexScale(byte[].class) == 1)) { throw new Error(); // force fallback to PureJavaComparator } }
Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. Replace with a simple call to Unsafe.getUnsafe when integrating into a jdk.
Returns:a sun.misc.Unsafe
/** * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. Replace with a simple * call to Unsafe.getUnsafe when integrating into a jdk. * * @return a sun.misc.Unsafe */
private static sun.misc.Unsafe getUnsafe() { try { return sun.misc.Unsafe.getUnsafe(); } catch (SecurityException e) { // that's okay; try reflection instead } try { return java.security.AccessController.doPrivileged( new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() { @Override public sun.misc.Unsafe run() throws Exception { Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class; for (java.lang.reflect.Field f : k.getDeclaredFields()) { f.setAccessible(true); Object x = f.get(null); if (k.isInstance(x)) { return k.cast(x); } } throw new NoSuchFieldError("the Unsafe"); } }); } catch (java.security.PrivilegedActionException e) { throw new RuntimeException("Could not initialize intrinsics", e.getCause()); } } @Override public int compare(byte[] left, byte[] right) { final int stride = 8; int minLength = Math.min(left.length, right.length); int strideLimit = minLength & ~(stride - 1); int i; /* * Compare 8 bytes at a time. Benchmarking on x86 shows a stride of 8 bytes is no slower * than 4 bytes even on 32-bit. On the other hand, it is substantially faster on 64-bit. */ for (i = 0; i < strideLimit; i += stride) { long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); if (lw != rw) { if (BIG_ENDIAN) { return UnsignedLongs.compare(lw, rw); } /* * We want to compare only the first index where left[index] != right[index]. This * corresponds to the least significant nonzero byte in lw ^ rw, since lw and rw are * little-endian. Long.numberOfTrailingZeros(diff) tells us the least significant * nonzero bit, and zeroing out the first three bits of L.nTZ gives us the shift to get * that least significant nonzero byte. */ int n = Long.numberOfTrailingZeros(lw ^ rw) & ~0x7; return ((int) ((lw >>> n) & UNSIGNED_MASK)) - ((int) ((rw >>> n) & UNSIGNED_MASK)); } } // The epilogue to cover the last (minLength % stride) elements. for (; i < minLength; i++) { int result = UnsignedBytes.compare(left[i], right[i]); if (result != 0) { return result; } } return left.length - right.length; } @Override public String toString() { return "UnsignedBytes.lexicographicalComparator() (sun.misc.Unsafe version)"; } } enum PureJavaComparator implements Comparator<byte[]> { INSTANCE; @Override public int compare(byte[] left, byte[] right) { int minLength = Math.min(left.length, right.length); for (int i = 0; i < minLength; i++) { int result = UnsignedBytes.compare(left[i], right[i]); if (result != 0) { return result; } } return left.length - right.length; } @Override public String toString() { return "UnsignedBytes.lexicographicalComparator() (pure Java version)"; } }
Returns the Unsafe-using Comparator, or falls back to the pure-Java implementation if unable to do so.
/** * Returns the Unsafe-using Comparator, or falls back to the pure-Java implementation if unable * to do so. */
static Comparator<byte[]> getBestComparator() { try { Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME); // yes, UnsafeComparator does implement Comparator<byte[]> @SuppressWarnings("unchecked") Comparator<byte[]> comparator = (Comparator<byte[]>) theClass.getEnumConstants()[0]; return comparator; } catch (Throwable t) { // ensure we really catch *everything* return lexicographicalComparatorJavaImpl(); } } } private static byte flip(byte b) { return (byte) (b ^ 0x80); }
Sorts the array, treating its elements as unsigned bytes.
Since:23.1
/** * Sorts the array, treating its elements as unsigned bytes. * * @since 23.1 */
public static void sort(byte[] array) { checkNotNull(array); sort(array, 0, array.length); }
Sorts the array between fromIndex inclusive and toIndex exclusive, treating its elements as unsigned bytes.
Since:23.1
/** * Sorts the array between {@code fromIndex} inclusive and {@code toIndex} exclusive, treating its * elements as unsigned bytes. * * @since 23.1 */
public static void sort(byte[] array, int fromIndex, int toIndex) { checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); for (int i = fromIndex; i < toIndex; i++) { array[i] = flip(array[i]); } Arrays.sort(array, fromIndex, toIndex); for (int i = fromIndex; i < toIndex; i++) { array[i] = flip(array[i]); } }
Sorts the elements of array in descending order, interpreting them as unsigned 8-bit integers.
Since:23.1
/** * Sorts the elements of {@code array} in descending order, interpreting them as unsigned 8-bit * integers. * * @since 23.1 */
public static void sortDescending(byte[] array) { checkNotNull(array); sortDescending(array, 0, array.length); }
Sorts the elements of array between fromIndex inclusive and toIndex exclusive in descending order, interpreting them as unsigned 8-bit integers.
Since:23.1
/** * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} * exclusive in descending order, interpreting them as unsigned 8-bit integers. * * @since 23.1 */
public static void sortDescending(byte[] array, int fromIndex, int toIndex) { checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); for (int i = fromIndex; i < toIndex; i++) { array[i] ^= Byte.MAX_VALUE; } Arrays.sort(array, fromIndex, toIndex); for (int i = fromIndex; i < toIndex; i++) { array[i] ^= Byte.MAX_VALUE; } } }