/*
* Copyright (C) 2012 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.common.math;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.primitives.Doubles.isFinite;
import static java.lang.Double.NaN;
import static java.lang.Double.isNaN;
import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtIncompatible;
A mutable object which accumulates paired double values (e.g. points on a plane) and tracks some
basic statistics over all the values added so far. This class is not thread safe.
Author: Pete Gillin Since: 20.0
/**
* A mutable object which accumulates paired double values (e.g. points on a plane) and tracks some
* basic statistics over all the values added so far. This class is not thread safe.
*
* @author Pete Gillin
* @since 20.0
*/
@Beta
@GwtIncompatible
public final class PairedStatsAccumulator {
// These fields must satisfy the requirements of PairedStats' constructor as well as those of the
// stat methods of this class.
private final StatsAccumulator xStats = new StatsAccumulator();
private final StatsAccumulator yStats = new StatsAccumulator();
private double sumOfProductsOfDeltas = 0.0;
Adds the given pair of values to the dataset. /** Adds the given pair of values to the dataset. */
public void add(double x, double y) {
// We extend the recursive expression for the one-variable case at Art of Computer Programming
// vol. 2, Knuth, 4.2.2, (16) to the two-variable case. We have two value series x_i and y_i.
// We define the arithmetic means X_n = 1/n \sum_{i=1}^n x_i, and Y_n = 1/n \sum_{i=1}^n y_i.
// We also define the sum of the products of the differences from the means
// C_n = \sum_{i=1}^n x_i y_i - n X_n Y_n
// for all n >= 1. Then for all n > 1:
// C_{n-1} = \sum_{i=1}^{n-1} x_i y_i - (n-1) X_{n-1} Y_{n-1}
// C_n - C_{n-1} = x_n y_n - n X_n Y_n + (n-1) X_{n-1} Y_{n-1}
// = x_n y_n - X_n [ y_n + (n-1) Y_{n-1} ] + [ n X_n - x_n ] Y_{n-1}
// = x_n y_n - X_n y_n - x_n Y_{n-1} + X_n Y_{n-1}
// = (x_n - X_n) (y_n - Y_{n-1})
xStats.add(x);
if (isFinite(x) && isFinite(y)) {
if (xStats.count() > 1) {
sumOfProductsOfDeltas += (x - xStats.mean()) * (y - yStats.mean());
}
} else {
sumOfProductsOfDeltas = NaN;
}
yStats.add(y);
}
Adds the given statistics to the dataset, as if the individual values used to compute the
statistics had been added directly.
/**
* Adds the given statistics to the dataset, as if the individual values used to compute the
* statistics had been added directly.
*/
public void addAll(PairedStats values) {
if (values.count() == 0) {
return;
}
xStats.addAll(values.xStats());
if (yStats.count() == 0) {
sumOfProductsOfDeltas = values.sumOfProductsOfDeltas();
} else {
// This is a generalized version of the calculation in add(double, double) above. Note that
// non-finite inputs will have sumOfProductsOfDeltas = NaN, so non-finite values will result
// in NaN naturally.
sumOfProductsOfDeltas +=
values.sumOfProductsOfDeltas()
+ (values.xStats().mean() - xStats.mean())
* (values.yStats().mean() - yStats.mean())
* values.count();
}
yStats.addAll(values.yStats());
}
Returns an immutable snapshot of the current statistics. /** Returns an immutable snapshot of the current statistics. */
public PairedStats snapshot() {
return new PairedStats(xStats.snapshot(), yStats.snapshot(), sumOfProductsOfDeltas);
}
Returns the number of pairs in the dataset. /** Returns the number of pairs in the dataset. */
public long count() {
return xStats.count();
}
Returns an immutable snapshot of the statistics on the x
values alone. /** Returns an immutable snapshot of the statistics on the {@code x} values alone. */
public Stats xStats() {
return xStats.snapshot();
}
Returns an immutable snapshot of the statistics on the y
values alone. /** Returns an immutable snapshot of the statistics on the {@code y} values alone. */
public Stats yStats() {
return yStats.snapshot();
}
Returns the population covariance of the values. The count must be non-zero.
This is guaranteed to return zero if the dataset contains a single pair of finite values. It
is not guaranteed to return zero when the dataset consists of the same pair of values multiple
times, due to numerical errors.
Non-finite values
If the dataset contains any non-finite values (Double.POSITIVE_INFINITY
, Double.NEGATIVE_INFINITY
, or Double.NaN
) then the result is Double.NaN
.
Throws: - IllegalStateException – if the dataset is empty
/**
* Returns the population covariance of the values. The count must be non-zero.
*
* <p>This is guaranteed to return zero if the dataset contains a single pair of finite values. It
* is not guaranteed to return zero when the dataset consists of the same pair of values multiple
* times, due to numerical errors.
*
* <h3>Non-finite values</h3>
*
* <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link
* Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}.
*
* @throws IllegalStateException if the dataset is empty
*/
public double populationCovariance() {
checkState(count() != 0);
return sumOfProductsOfDeltas / count();
}
Returns the sample covariance of the values. The count must be greater than one.
This is not guaranteed to return zero when the dataset consists of the same pair of values
multiple times, due to numerical errors.
Non-finite values
If the dataset contains any non-finite values (Double.POSITIVE_INFINITY
, Double.NEGATIVE_INFINITY
, or Double.NaN
) then the result is Double.NaN
.
Throws: - IllegalStateException – if the dataset is empty or contains a single pair of values
/**
* Returns the sample covariance of the values. The count must be greater than one.
*
* <p>This is not guaranteed to return zero when the dataset consists of the same pair of values
* multiple times, due to numerical errors.
*
* <h3>Non-finite values</h3>
*
* <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link
* Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}.
*
* @throws IllegalStateException if the dataset is empty or contains a single pair of values
*/
public final double sampleCovariance() {
checkState(count() > 1);
return sumOfProductsOfDeltas / (count() - 1);
}
Returns the Pearson's or
product-moment correlation coefficient of the values. The count must greater than one, and the x
and y
values must both have non-zero population variance (i.e.
xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0
). The result is not guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1]. Non-finite values
If the dataset contains any non-finite values (Double.POSITIVE_INFINITY
, Double.NEGATIVE_INFINITY
, or Double.NaN
) then the result is Double.NaN
.
Throws: - IllegalStateException – if the dataset is empty or contains a single pair of values, or either the
x
and y
dataset has zero population variance
/**
* Returns the <a href="http://mathworld.wolfram.com/CorrelationCoefficient.html">Pearson's or
* product-moment correlation coefficient</a> of the values. The count must greater than one, and
* the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code
* xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not
* guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to
* numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
*
* <h3>Non-finite values</h3>
*
* <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link
* Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}.
*
* @throws IllegalStateException if the dataset is empty or contains a single pair of values, or
* either the {@code x} and {@code y} dataset has zero population variance
*/
public final double pearsonsCorrelationCoefficient() {
checkState(count() > 1);
if (isNaN(sumOfProductsOfDeltas)) {
return NaN;
}
double xSumOfSquaresOfDeltas = xStats.sumOfSquaresOfDeltas();
double ySumOfSquaresOfDeltas = yStats.sumOfSquaresOfDeltas();
checkState(xSumOfSquaresOfDeltas > 0.0);
checkState(ySumOfSquaresOfDeltas > 0.0);
// The product of two positive numbers can be zero if the multiplication underflowed. We
// force a positive value by effectively rounding up to MIN_VALUE.
double productOfSumsOfSquaresOfDeltas =
ensurePositive(xSumOfSquaresOfDeltas * ySumOfSquaresOfDeltas);
return ensureInUnitRange(sumOfProductsOfDeltas / Math.sqrt(productOfSumsOfSquaresOfDeltas));
}
Returns a linear transformation giving the best fit to the data according to Ordinary Least Squares linear
regression of y
as a function of x
. The count must be greater than one, and either the x
or y
data must have a non-zero population variance (i.e.
xStats().populationVariance() > 0.0 || yStats().populationVariance() > 0.0
). The result is guaranteed to be horizontal if there is variance in the x
data but not the y
data, and vertical if there is variance in the y
data but not the x
data. This fit minimizes the root-mean-square error in y
as a function of x
. This error is defined as the square root of the mean of the squares of the differences between the actual y
values of the data and the values predicted by the fit for the x
values (i.e. it is the square root of the mean of the squares of the vertical distances between the data points and the best fit line). For this fit, this error is a fraction sqrt(1 -
R*R)
of the population standard deviation of y
, where R
is the Pearson's correlation coefficient (as given by pearsonsCorrelationCoefficient()
).
The corresponding root-mean-square error in x
as a function of y
is a fraction sqrt(1/(R*R) - 1)
of the population standard deviation of x
. This fit does not normally minimize that error: to do that, you should swap the roles of x
and y
.
Non-finite values
If the dataset contains any non-finite values (Double.POSITIVE_INFINITY
, Double.NEGATIVE_INFINITY
, or Double.NaN
) then the result is LinearTransformation.forNaN()
.
Throws: - IllegalStateException – if the dataset is empty or contains a single pair of values, or both the
x
and y
dataset have zero population variance
/**
* Returns a linear transformation giving the best fit to the data according to <a
* href="http://mathworld.wolfram.com/LeastSquaresFitting.html">Ordinary Least Squares linear
* regression</a> of {@code y} as a function of {@code x}. The count must be greater than one, and
* either the {@code x} or {@code y} data must have a non-zero population variance (i.e. {@code
* xStats().populationVariance() > 0.0 || yStats().populationVariance() > 0.0}). The result is
* guaranteed to be horizontal if there is variance in the {@code x} data but not the {@code y}
* data, and vertical if there is variance in the {@code y} data but not the {@code x} data.
*
* <p>This fit minimizes the root-mean-square error in {@code y} as a function of {@code x}. This
* error is defined as the square root of the mean of the squares of the differences between the
* actual {@code y} values of the data and the values predicted by the fit for the {@code x}
* values (i.e. it is the square root of the mean of the squares of the vertical distances between
* the data points and the best fit line). For this fit, this error is a fraction {@code sqrt(1 -
* R*R)} of the population standard deviation of {@code y}, where {@code R} is the Pearson's
* correlation coefficient (as given by {@link #pearsonsCorrelationCoefficient()}).
*
* <p>The corresponding root-mean-square error in {@code x} as a function of {@code y} is a
* fraction {@code sqrt(1/(R*R) - 1)} of the population standard deviation of {@code x}. This fit
* does not normally minimize that error: to do that, you should swap the roles of {@code x} and
* {@code y}.
*
* <h3>Non-finite values</h3>
*
* <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link
* Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link
* LinearTransformation#forNaN()}.
*
* @throws IllegalStateException if the dataset is empty or contains a single pair of values, or
* both the {@code x} and {@code y} dataset have zero population variance
*/
public final LinearTransformation leastSquaresFit() {
checkState(count() > 1);
if (isNaN(sumOfProductsOfDeltas)) {
return LinearTransformation.forNaN();
}
double xSumOfSquaresOfDeltas = xStats.sumOfSquaresOfDeltas();
if (xSumOfSquaresOfDeltas > 0.0) {
if (yStats.sumOfSquaresOfDeltas() > 0.0) {
return LinearTransformation.mapping(xStats.mean(), yStats.mean())
.withSlope(sumOfProductsOfDeltas / xSumOfSquaresOfDeltas);
} else {
return LinearTransformation.horizontal(yStats.mean());
}
} else {
checkState(yStats.sumOfSquaresOfDeltas() > 0.0);
return LinearTransformation.vertical(xStats.mean());
}
}
private double ensurePositive(double value) {
if (value > 0.0) {
return value;
} else {
return Double.MIN_VALUE;
}
}
private static double ensureInUnitRange(double value) {
if (value >= 1.0) {
return 1.0;
}
if (value <= -1.0) {
return -1.0;
}
return value;
}
}