/*
 * Copyright (C) 2007 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.collect.CollectPreconditions.checkNonnegative;
import static com.google.common.collect.CollectPreconditions.checkRemove;
import static com.google.common.collect.Hashing.smearedHash;

import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Objects;
import com.google.common.collect.Maps.IteratorBasedAbstractMap;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import com.google.j2objc.annotations.RetainedWith;
import com.google.j2objc.annotations.WeakOuter;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.Arrays;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import org.checkerframework.checker.nullness.qual.MonotonicNonNull;
import org.checkerframework.checker.nullness.qual.Nullable;

A BiMap backed by two hash tables. This implementation allows null keys and values. A HashBiMap and its inverse are both serializable.

This implementation guarantees insertion-based iteration order of its keys.

See the Guava User Guide article on BiMap .

Author:Louis Wasserman, Mike Bostock
Since:2.0
/** * A {@link BiMap} backed by two hash tables. This implementation allows null keys and values. A * {@code HashBiMap} and its inverse are both serializable. * * <p>This implementation guarantees insertion-based iteration order of its keys. * * <p>See the Guava User Guide article on <a href= * "https://github.com/google/guava/wiki/NewCollectionTypesExplained#bimap"> {@code BiMap} </a>. * * @author Louis Wasserman * @author Mike Bostock * @since 2.0 */
@GwtCompatible(emulated = true) public final class HashBiMap<K, V> extends IteratorBasedAbstractMap<K, V> implements BiMap<K, V>, Serializable {
Returns a new, empty HashBiMap with the default initial capacity (16).
/** Returns a new, empty {@code HashBiMap} with the default initial capacity (16). */
public static <K, V> HashBiMap<K, V> create() { return create(16); }
Constructs a new, empty bimap with the specified expected size.
Params:
  • expectedSize – the expected number of entries
Throws:
/** * Constructs a new, empty bimap with the specified expected size. * * @param expectedSize the expected number of entries * @throws IllegalArgumentException if the specified expected size is negative */
public static <K, V> HashBiMap<K, V> create(int expectedSize) { return new HashBiMap<>(expectedSize); }
Constructs a new bimap containing initial values from map. The bimap is created with an initial capacity sufficient to hold the mappings in the specified map.
/** * Constructs a new bimap containing initial values from {@code map}. The bimap is created with an * initial capacity sufficient to hold the mappings in the specified map. */
public static <K, V> HashBiMap<K, V> create(Map<? extends K, ? extends V> map) { HashBiMap<K, V> bimap = create(map.size()); bimap.putAll(map); return bimap; } private static final class BiEntry<K, V> extends ImmutableEntry<K, V> { final int keyHash; final int valueHash; @Nullable BiEntry<K, V> nextInKToVBucket; @Nullable BiEntry<K, V> nextInVToKBucket; @Nullable BiEntry<K, V> nextInKeyInsertionOrder; @Nullable BiEntry<K, V> prevInKeyInsertionOrder; BiEntry(K key, int keyHash, V value, int valueHash) { super(key, value); this.keyHash = keyHash; this.valueHash = valueHash; } } private static final double LOAD_FACTOR = 1.0; private transient BiEntry<K, V>[] hashTableKToV; private transient BiEntry<K, V>[] hashTableVToK; private transient @Nullable BiEntry<K, V> firstInKeyInsertionOrder; private transient @Nullable BiEntry<K, V> lastInKeyInsertionOrder; private transient int size; private transient int mask; private transient int modCount; private HashBiMap(int expectedSize) { init(expectedSize); } private void init(int expectedSize) { checkNonnegative(expectedSize, "expectedSize"); int tableSize = Hashing.closedTableSize(expectedSize, LOAD_FACTOR); this.hashTableKToV = createTable(tableSize); this.hashTableVToK = createTable(tableSize); this.firstInKeyInsertionOrder = null; this.lastInKeyInsertionOrder = null; this.size = 0; this.mask = tableSize - 1; this.modCount = 0; }
Finds and removes entry from the bucket linked lists in both the key-to-value direction and the value-to-key direction.
/** * Finds and removes {@code entry} from the bucket linked lists in both the key-to-value direction * and the value-to-key direction. */
private void delete(BiEntry<K, V> entry) { int keyBucket = entry.keyHash & mask; BiEntry<K, V> prevBucketEntry = null; for (BiEntry<K, V> bucketEntry = hashTableKToV[keyBucket]; true; bucketEntry = bucketEntry.nextInKToVBucket) { if (bucketEntry == entry) { if (prevBucketEntry == null) { hashTableKToV[keyBucket] = entry.nextInKToVBucket; } else { prevBucketEntry.nextInKToVBucket = entry.nextInKToVBucket; } break; } prevBucketEntry = bucketEntry; } int valueBucket = entry.valueHash & mask; prevBucketEntry = null; for (BiEntry<K, V> bucketEntry = hashTableVToK[valueBucket]; true; bucketEntry = bucketEntry.nextInVToKBucket) { if (bucketEntry == entry) { if (prevBucketEntry == null) { hashTableVToK[valueBucket] = entry.nextInVToKBucket; } else { prevBucketEntry.nextInVToKBucket = entry.nextInVToKBucket; } break; } prevBucketEntry = bucketEntry; } if (entry.prevInKeyInsertionOrder == null) { firstInKeyInsertionOrder = entry.nextInKeyInsertionOrder; } else { entry.prevInKeyInsertionOrder.nextInKeyInsertionOrder = entry.nextInKeyInsertionOrder; } if (entry.nextInKeyInsertionOrder == null) { lastInKeyInsertionOrder = entry.prevInKeyInsertionOrder; } else { entry.nextInKeyInsertionOrder.prevInKeyInsertionOrder = entry.prevInKeyInsertionOrder; } size--; modCount++; } private void insert(BiEntry<K, V> entry, @Nullable BiEntry<K, V> oldEntryForKey) { int keyBucket = entry.keyHash & mask; entry.nextInKToVBucket = hashTableKToV[keyBucket]; hashTableKToV[keyBucket] = entry; int valueBucket = entry.valueHash & mask; entry.nextInVToKBucket = hashTableVToK[valueBucket]; hashTableVToK[valueBucket] = entry; if (oldEntryForKey == null) { entry.prevInKeyInsertionOrder = lastInKeyInsertionOrder; entry.nextInKeyInsertionOrder = null; if (lastInKeyInsertionOrder == null) { firstInKeyInsertionOrder = entry; } else { lastInKeyInsertionOrder.nextInKeyInsertionOrder = entry; } lastInKeyInsertionOrder = entry; } else { entry.prevInKeyInsertionOrder = oldEntryForKey.prevInKeyInsertionOrder; if (entry.prevInKeyInsertionOrder == null) { firstInKeyInsertionOrder = entry; } else { entry.prevInKeyInsertionOrder.nextInKeyInsertionOrder = entry; } entry.nextInKeyInsertionOrder = oldEntryForKey.nextInKeyInsertionOrder; if (entry.nextInKeyInsertionOrder == null) { lastInKeyInsertionOrder = entry; } else { entry.nextInKeyInsertionOrder.prevInKeyInsertionOrder = entry; } } size++; modCount++; } private BiEntry<K, V> seekByKey(@Nullable Object key, int keyHash) { for (BiEntry<K, V> entry = hashTableKToV[keyHash & mask]; entry != null; entry = entry.nextInKToVBucket) { if (keyHash == entry.keyHash && Objects.equal(key, entry.key)) { return entry; } } return null; } private BiEntry<K, V> seekByValue(@Nullable Object value, int valueHash) { for (BiEntry<K, V> entry = hashTableVToK[valueHash & mask]; entry != null; entry = entry.nextInVToKBucket) { if (valueHash == entry.valueHash && Objects.equal(value, entry.value)) { return entry; } } return null; } @Override public boolean containsKey(@Nullable Object key) { return seekByKey(key, smearedHash(key)) != null; } @Override public boolean containsValue(@Nullable Object value) { return seekByValue(value, smearedHash(value)) != null; } @Override public @Nullable V get(@Nullable Object key) { return Maps.valueOrNull(seekByKey(key, smearedHash(key))); } @CanIgnoreReturnValue @Override public V put(@Nullable K key, @Nullable V value) { return put(key, value, false); } private V put(@Nullable K key, @Nullable V value, boolean force) { int keyHash = smearedHash(key); int valueHash = smearedHash(value); BiEntry<K, V> oldEntryForKey = seekByKey(key, keyHash); if (oldEntryForKey != null && valueHash == oldEntryForKey.valueHash && Objects.equal(value, oldEntryForKey.value)) { return value; } BiEntry<K, V> oldEntryForValue = seekByValue(value, valueHash); if (oldEntryForValue != null) { if (force) { delete(oldEntryForValue); } else { throw new IllegalArgumentException("value already present: " + value); } } BiEntry<K, V> newEntry = new BiEntry<>(key, keyHash, value, valueHash); if (oldEntryForKey != null) { delete(oldEntryForKey); insert(newEntry, oldEntryForKey); oldEntryForKey.prevInKeyInsertionOrder = null; oldEntryForKey.nextInKeyInsertionOrder = null; return oldEntryForKey.value; } else { insert(newEntry, null); rehashIfNecessary(); return null; } } @CanIgnoreReturnValue @Override @Nullable public V forcePut(@Nullable K key, @Nullable V value) { return put(key, value, true); } private @Nullable K putInverse(@Nullable V value, @Nullable K key, boolean force) { int valueHash = smearedHash(value); int keyHash = smearedHash(key); BiEntry<K, V> oldEntryForValue = seekByValue(value, valueHash); BiEntry<K, V> oldEntryForKey = seekByKey(key, keyHash); if (oldEntryForValue != null && keyHash == oldEntryForValue.keyHash && Objects.equal(key, oldEntryForValue.key)) { return key; } else if (oldEntryForKey != null && !force) { throw new IllegalArgumentException("key already present: " + key); } /* * The ordering here is important: if we deleted the key entry and then the value entry, * the key entry's prev or next pointer might point to the dead value entry, and when we * put the new entry in the key entry's position in iteration order, it might invalidate * the linked list. */ if (oldEntryForValue != null) { delete(oldEntryForValue); } if (oldEntryForKey != null) { delete(oldEntryForKey); } BiEntry<K, V> newEntry = new BiEntry<>(key, keyHash, value, valueHash); insert(newEntry, oldEntryForKey); if (oldEntryForKey != null) { oldEntryForKey.prevInKeyInsertionOrder = null; oldEntryForKey.nextInKeyInsertionOrder = null; } if (oldEntryForValue != null) { oldEntryForValue.prevInKeyInsertionOrder = null; oldEntryForValue.nextInKeyInsertionOrder = null; } rehashIfNecessary(); return Maps.keyOrNull(oldEntryForValue); } private void rehashIfNecessary() { BiEntry<K, V>[] oldKToV = hashTableKToV; if (Hashing.needsResizing(size, oldKToV.length, LOAD_FACTOR)) { int newTableSize = oldKToV.length * 2; this.hashTableKToV = createTable(newTableSize); this.hashTableVToK = createTable(newTableSize); this.mask = newTableSize - 1; this.size = 0; for (BiEntry<K, V> entry = firstInKeyInsertionOrder; entry != null; entry = entry.nextInKeyInsertionOrder) { insert(entry, entry); } this.modCount++; } } @SuppressWarnings("unchecked") private BiEntry<K, V>[] createTable(int length) { return new BiEntry[length]; } @CanIgnoreReturnValue @Override @Nullable public V remove(@Nullable Object key) { BiEntry<K, V> entry = seekByKey(key, smearedHash(key)); if (entry == null) { return null; } else { delete(entry); entry.prevInKeyInsertionOrder = null; entry.nextInKeyInsertionOrder = null; return entry.value; } } @Override public void clear() { size = 0; Arrays.fill(hashTableKToV, null); Arrays.fill(hashTableVToK, null); firstInKeyInsertionOrder = null; lastInKeyInsertionOrder = null; modCount++; } @Override public int size() { return size; } abstract class Itr<T> implements Iterator<T> { BiEntry<K, V> next = firstInKeyInsertionOrder; BiEntry<K, V> toRemove = null; int expectedModCount = modCount; int remaining = size(); @Override public boolean hasNext() { if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } return next != null && remaining > 0; } @Override public T next() { if (!hasNext()) { throw new NoSuchElementException(); } BiEntry<K, V> entry = next; next = entry.nextInKeyInsertionOrder; toRemove = entry; remaining--; return output(entry); } @Override public void remove() { if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } checkRemove(toRemove != null); delete(toRemove); expectedModCount = modCount; toRemove = null; } abstract T output(BiEntry<K, V> entry); } @Override public Set<K> keySet() { return new KeySet(); } @WeakOuter private final class KeySet extends Maps.KeySet<K, V> { KeySet() { super(HashBiMap.this); } @Override public Iterator<K> iterator() { return new Itr<K>() { @Override K output(BiEntry<K, V> entry) { return entry.key; } }; } @Override public boolean remove(@Nullable Object o) { BiEntry<K, V> entry = seekByKey(o, smearedHash(o)); if (entry == null) { return false; } else { delete(entry); entry.prevInKeyInsertionOrder = null; entry.nextInKeyInsertionOrder = null; return true; } } } @Override public Set<V> values() { return inverse().keySet(); } @Override Iterator<Entry<K, V>> entryIterator() { return new Itr<Entry<K, V>>() { @Override Entry<K, V> output(BiEntry<K, V> entry) { return new MapEntry(entry); } class MapEntry extends AbstractMapEntry<K, V> { BiEntry<K, V> delegate; MapEntry(BiEntry<K, V> entry) { this.delegate = entry; } @Override public K getKey() { return delegate.key; } @Override public V getValue() { return delegate.value; } @Override public V setValue(V value) { V oldValue = delegate.value; int valueHash = smearedHash(value); if (valueHash == delegate.valueHash && Objects.equal(value, oldValue)) { return value; } checkArgument(seekByValue(value, valueHash) == null, "value already present: %s", value); delete(delegate); BiEntry<K, V> newEntry = new BiEntry<>(delegate.key, delegate.keyHash, value, valueHash); insert(newEntry, delegate); delegate.prevInKeyInsertionOrder = null; delegate.nextInKeyInsertionOrder = null; expectedModCount = modCount; if (toRemove == delegate) { toRemove = newEntry; } delegate = newEntry; return oldValue; } } }; } @Override public void forEach(BiConsumer<? super K, ? super V> action) { checkNotNull(action); for (BiEntry<K, V> entry = firstInKeyInsertionOrder; entry != null; entry = entry.nextInKeyInsertionOrder) { action.accept(entry.key, entry.value); } } @Override public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { checkNotNull(function); BiEntry<K, V> oldFirst = firstInKeyInsertionOrder; clear(); for (BiEntry<K, V> entry = oldFirst; entry != null; entry = entry.nextInKeyInsertionOrder) { put(entry.key, function.apply(entry.key, entry.value)); } } @MonotonicNonNull @RetainedWith private transient BiMap<V, K> inverse; @Override public BiMap<V, K> inverse() { BiMap<V, K> result = inverse; return (result == null) ? inverse = new Inverse() : result; } private final class Inverse extends IteratorBasedAbstractMap<V, K> implements BiMap<V, K>, Serializable { BiMap<K, V> forward() { return HashBiMap.this; } @Override public int size() { return size; } @Override public void clear() { forward().clear(); } @Override public boolean containsKey(@Nullable Object value) { return forward().containsValue(value); } @Override public K get(@Nullable Object value) { return Maps.keyOrNull(seekByValue(value, smearedHash(value))); } @CanIgnoreReturnValue @Override @Nullable public K put(@Nullable V value, @Nullable K key) { return putInverse(value, key, false); } @Override @Nullable public K forcePut(@Nullable V value, @Nullable K key) { return putInverse(value, key, true); } @Override @Nullable public K remove(@Nullable Object value) { BiEntry<K, V> entry = seekByValue(value, smearedHash(value)); if (entry == null) { return null; } else { delete(entry); entry.prevInKeyInsertionOrder = null; entry.nextInKeyInsertionOrder = null; return entry.key; } } @Override public BiMap<K, V> inverse() { return forward(); } @Override public Set<V> keySet() { return new InverseKeySet(); } @WeakOuter private final class InverseKeySet extends Maps.KeySet<V, K> { InverseKeySet() { super(Inverse.this); } @Override public boolean remove(@Nullable Object o) { BiEntry<K, V> entry = seekByValue(o, smearedHash(o)); if (entry == null) { return false; } else { delete(entry); return true; } } @Override public Iterator<V> iterator() { return new Itr<V>() { @Override V output(BiEntry<K, V> entry) { return entry.value; } }; } } @Override public Set<K> values() { return forward().keySet(); } @Override Iterator<Entry<V, K>> entryIterator() { return new Itr<Entry<V, K>>() { @Override Entry<V, K> output(BiEntry<K, V> entry) { return new InverseEntry(entry); } class InverseEntry extends AbstractMapEntry<V, K> { BiEntry<K, V> delegate; InverseEntry(BiEntry<K, V> entry) { this.delegate = entry; } @Override public V getKey() { return delegate.value; } @Override public K getValue() { return delegate.key; } @Override public K setValue(K key) { K oldKey = delegate.key; int keyHash = smearedHash(key); if (keyHash == delegate.keyHash && Objects.equal(key, oldKey)) { return key; } checkArgument(seekByKey(key, keyHash) == null, "value already present: %s", key); delete(delegate); BiEntry<K, V> newEntry = new BiEntry<>(key, keyHash, delegate.value, delegate.valueHash); delegate = newEntry; insert(newEntry, null); expectedModCount = modCount; return oldKey; } } }; } @Override public void forEach(BiConsumer<? super V, ? super K> action) { checkNotNull(action); HashBiMap.this.forEach((k, v) -> action.accept(v, k)); } @Override public void replaceAll(BiFunction<? super V, ? super K, ? extends K> function) { checkNotNull(function); BiEntry<K, V> oldFirst = firstInKeyInsertionOrder; clear(); for (BiEntry<K, V> entry = oldFirst; entry != null; entry = entry.nextInKeyInsertionOrder) { put(entry.value, function.apply(entry.value, entry.key)); } } Object writeReplace() { return new InverseSerializedForm<>(HashBiMap.this); } } private static final class InverseSerializedForm<K, V> implements Serializable { private final HashBiMap<K, V> bimap; InverseSerializedForm(HashBiMap<K, V> bimap) { this.bimap = bimap; } Object readResolve() { return bimap.inverse(); } }
@serialDatathe number of entries, first key, first value, second key, second value, and so on.
/** * @serialData the number of entries, first key, first value, second key, second value, and so on. */
@GwtIncompatible // java.io.ObjectOutputStream private void writeObject(ObjectOutputStream stream) throws IOException { stream.defaultWriteObject(); Serialization.writeMap(this, stream); } @GwtIncompatible // java.io.ObjectInputStream private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException { stream.defaultReadObject(); int size = Serialization.readCount(stream); init(16); // resist hostile attempts to allocate gratuitous heap Serialization.populateMap(this, stream, size); } @GwtIncompatible // Not needed in emulated source private static final long serialVersionUID = 0; }