/*
 * Copyright (C) 2008 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.collect.CollectPreconditions.checkNonnegative;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.base.Function;
import com.google.common.base.Predicate;
import com.google.common.base.Predicates;
import com.google.common.math.IntMath;
import com.google.common.primitives.Ints;
import java.util.AbstractCollection;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.Spliterator;
import java.util.function.Consumer;
import org.checkerframework.checker.nullness.qual.Nullable;

Provides static methods for working with Collection instances.

Java 8 users: several common uses for this class are now more comprehensively addressed by the new Stream library. Read the method documentation below for comparisons. These methods are not being deprecated, but we gently encourage you to migrate to streams.

Author:Chris Povirk, Mike Bostock, Jared Levy
Since:2.0
/** * Provides static methods for working with {@code Collection} instances. * * <p><b>Java 8 users:</b> several common uses for this class are now more comprehensively addressed * by the new {@link java.util.stream.Stream} library. Read the method documentation below for * comparisons. These methods are not being deprecated, but we gently encourage you to migrate to * streams. * * @author Chris Povirk * @author Mike Bostock * @author Jared Levy * @since 2.0 */
@GwtCompatible public final class Collections2 { private Collections2() {}
Returns the elements of unfiltered that satisfy a predicate. The returned collection is a live view of unfiltered; changes to one affect the other.

The resulting collection's iterator does not support remove(), but all other collection methods are supported. When given an element that doesn't satisfy the predicate, the collection's add() and addAll() methods throw an IllegalArgumentException. When methods such as removeAll() and clear() are called on the filtered collection, only elements that satisfy the filter will be removed from the underlying collection.

The returned collection isn't threadsafe or serializable, even if unfiltered is.

Many of the filtered collection's methods, such as size(), iterate across every element in the underlying collection and determine which elements satisfy the filter. When a live view is not needed, it may be faster to copy Iterables.filter(unfiltered, predicate) and use the copy.

Warning: predicate must be consistent with equals, as documented at Predicate.apply. Do not provide a predicate such as Predicates.instanceOf(ArrayList.class), which is inconsistent with equals. (See Iterables.filter(Iterable<?>, Class<Object>) for related functionality.)

Stream equivalent: Stream.filter.

/** * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned collection is * a live view of {@code unfiltered}; changes to one affect the other. * * <p>The resulting collection's iterator does not support {@code remove()}, but all other * collection methods are supported. When given an element that doesn't satisfy the predicate, the * collection's {@code add()} and {@code addAll()} methods throw an {@link * IllegalArgumentException}. When methods such as {@code removeAll()} and {@code clear()} are * called on the filtered collection, only elements that satisfy the filter will be removed from * the underlying collection. * * <p>The returned collection isn't threadsafe or serializable, even if {@code unfiltered} is. * * <p>Many of the filtered collection's methods, such as {@code size()}, iterate across every * element in the underlying collection and determine which elements satisfy the filter. When a * live view is <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, * predicate)} and use the copy. * * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at * {@link Predicate#apply}. Do not provide a predicate such as {@code * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link * Iterables#filter(Iterable, Class)} for related functionality.) * * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#filter Stream.filter}. */
// TODO(kevinb): how can we omit that Iterables link when building gwt // javadoc? public static <E> Collection<E> filter(Collection<E> unfiltered, Predicate<? super E> predicate) { if (unfiltered instanceof FilteredCollection) { // Support clear(), removeAll(), and retainAll() when filtering a filtered // collection. return ((FilteredCollection<E>) unfiltered).createCombined(predicate); } return new FilteredCollection<E>(checkNotNull(unfiltered), checkNotNull(predicate)); }
Delegates to Collection.contains. Returns false if the contains method throws a ClassCastException or NullPointerException.
/** * Delegates to {@link Collection#contains}. Returns {@code false} if the {@code contains} method * throws a {@code ClassCastException} or {@code NullPointerException}. */
static boolean safeContains(Collection<?> collection, @Nullable Object object) { checkNotNull(collection); try { return collection.contains(object); } catch (ClassCastException | NullPointerException e) { return false; } }
Delegates to Collection.remove. Returns false if the remove method throws a ClassCastException or NullPointerException.
/** * Delegates to {@link Collection#remove}. Returns {@code false} if the {@code remove} method * throws a {@code ClassCastException} or {@code NullPointerException}. */
static boolean safeRemove(Collection<?> collection, @Nullable Object object) { checkNotNull(collection); try { return collection.remove(object); } catch (ClassCastException | NullPointerException e) { return false; } } static class FilteredCollection<E> extends AbstractCollection<E> { final Collection<E> unfiltered; final Predicate<? super E> predicate; FilteredCollection(Collection<E> unfiltered, Predicate<? super E> predicate) { this.unfiltered = unfiltered; this.predicate = predicate; } FilteredCollection<E> createCombined(Predicate<? super E> newPredicate) { return new FilteredCollection<E>(unfiltered, Predicates.<E>and(predicate, newPredicate)); // .<E> above needed to compile in JDK 5 } @Override public boolean add(E element) { checkArgument(predicate.apply(element)); return unfiltered.add(element); } @Override public boolean addAll(Collection<? extends E> collection) { for (E element : collection) { checkArgument(predicate.apply(element)); } return unfiltered.addAll(collection); } @Override public void clear() { Iterables.removeIf(unfiltered, predicate); } @Override public boolean contains(@Nullable Object element) { if (safeContains(unfiltered, element)) { @SuppressWarnings("unchecked") // element is in unfiltered, so it must be an E E e = (E) element; return predicate.apply(e); } return false; } @Override public boolean containsAll(Collection<?> collection) { return containsAllImpl(this, collection); } @Override public boolean isEmpty() { return !Iterables.any(unfiltered, predicate); } @Override public Iterator<E> iterator() { return Iterators.filter(unfiltered.iterator(), predicate); } @Override public Spliterator<E> spliterator() { return CollectSpliterators.filter(unfiltered.spliterator(), predicate); } @Override public void forEach(Consumer<? super E> action) { checkNotNull(action); unfiltered.forEach( (E e) -> { if (predicate.test(e)) { action.accept(e); } }); } @Override public boolean remove(Object element) { return contains(element) && unfiltered.remove(element); } @Override public boolean removeAll(final Collection<?> collection) { return removeIf(collection::contains); } @Override public boolean retainAll(final Collection<?> collection) { return removeIf(element -> !collection.contains(element)); } @Override public boolean removeIf(java.util.function.Predicate<? super E> filter) { checkNotNull(filter); return unfiltered.removeIf(element -> predicate.apply(element) && filter.test(element)); } @Override public int size() { int size = 0; for (E e : unfiltered) { if (predicate.apply(e)) { size++; } } return size; } @Override public Object[] toArray() { // creating an ArrayList so filtering happens once return Lists.newArrayList(iterator()).toArray(); } @Override public <T> T[] toArray(T[] array) { return Lists.newArrayList(iterator()).toArray(array); } }
Returns a collection that applies function to each element of fromCollection. The returned collection is a live view of fromCollection; changes to one affect the other.

The returned collection's add() and addAll() methods throw an UnsupportedOperationException. All other collection methods are supported, as long as fromCollection supports them.

The returned collection isn't threadsafe or serializable, even if fromCollection is.

When a live view is not needed, it may be faster to copy the transformed collection and use the copy.

If the input Collection is known to be a List, consider Lists.transform. If only an Iterable is available, use Iterables.transform.

Stream equivalent: Stream.map.

/** * Returns a collection that applies {@code function} to each element of {@code fromCollection}. * The returned collection is a live view of {@code fromCollection}; changes to one affect the * other. * * <p>The returned collection's {@code add()} and {@code addAll()} methods throw an {@link * UnsupportedOperationException}. All other collection methods are supported, as long as {@code * fromCollection} supports them. * * <p>The returned collection isn't threadsafe or serializable, even if {@code fromCollection} is. * * <p>When a live view is <i>not</i> needed, it may be faster to copy the transformed collection * and use the copy. * * <p>If the input {@code Collection} is known to be a {@code List}, consider {@link * Lists#transform}. If only an {@code Iterable} is available, use {@link Iterables#transform}. * * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#map Stream.map}. */
public static <F, T> Collection<T> transform( Collection<F> fromCollection, Function<? super F, T> function) { return new TransformedCollection<>(fromCollection, function); } static class TransformedCollection<F, T> extends AbstractCollection<T> { final Collection<F> fromCollection; final Function<? super F, ? extends T> function; TransformedCollection(Collection<F> fromCollection, Function<? super F, ? extends T> function) { this.fromCollection = checkNotNull(fromCollection); this.function = checkNotNull(function); } @Override public void clear() { fromCollection.clear(); } @Override public boolean isEmpty() { return fromCollection.isEmpty(); } @Override public Iterator<T> iterator() { return Iterators.transform(fromCollection.iterator(), function); } @Override public Spliterator<T> spliterator() { return CollectSpliterators.map(fromCollection.spliterator(), function); } @Override public void forEach(Consumer<? super T> action) { checkNotNull(action); fromCollection.forEach((F f) -> action.accept(function.apply(f))); } @Override public boolean removeIf(java.util.function.Predicate<? super T> filter) { checkNotNull(filter); return fromCollection.removeIf(element -> filter.test(function.apply(element))); } @Override public int size() { return fromCollection.size(); } }
Returns true if the collection self contains all of the elements in the collection c.

This method iterates over the specified collection c, checking each element returned by the iterator in turn to see if it is contained in the specified collection self. If all elements are so contained, true is returned, otherwise false.

Params:
  • self – a collection which might contain all elements in c
  • c – a collection whose elements might be contained by self
/** * Returns {@code true} if the collection {@code self} contains all of the elements in the * collection {@code c}. * * <p>This method iterates over the specified collection {@code c}, checking each element returned * by the iterator in turn to see if it is contained in the specified collection {@code self}. If * all elements are so contained, {@code true} is returned, otherwise {@code false}. * * @param self a collection which might contain all elements in {@code c} * @param c a collection whose elements might be contained by {@code self} */
static boolean containsAllImpl(Collection<?> self, Collection<?> c) { for (Object o : c) { if (!self.contains(o)) { return false; } } return true; }
An implementation of Object.toString().
/** An implementation of {@link Collection#toString()}. */
static String toStringImpl(final Collection<?> collection) { StringBuilder sb = newStringBuilderForCollection(collection.size()).append('['); boolean first = true; for (Object o : collection) { if (!first) { sb.append(", "); } first = false; if (o == collection) { sb.append("(this Collection)"); } else { sb.append(o); } } return sb.append(']').toString(); }
Returns best-effort-sized StringBuilder based on the given collection size.
/** Returns best-effort-sized StringBuilder based on the given collection size. */
static StringBuilder newStringBuilderForCollection(int size) { checkNonnegative(size, "size"); return new StringBuilder((int) Math.min(size * 8L, Ints.MAX_POWER_OF_TWO)); }
Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557
/** Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 */
static <T> Collection<T> cast(Iterable<T> iterable) { return (Collection<T>) iterable; }
Returns a Collection of all the permutations of the specified Iterable.

Notes: This is an implementation of the algorithm for Lexicographical Permutations Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the first permutation will be in ascending order, and the last will be in descending order.

Duplicate elements are considered equal. For example, the list [1, 1] will have only one permutation, instead of two. This is why the elements have to implement Comparable.

An empty iterable has only one permutation, which is an empty list.

This method is equivalent to Collections2.orderedPermutations(list, Ordering.natural()).

Params:
  • elements – the original iterable whose elements have to be permuted.
Throws:
Returns:an immutable Collection containing all the different permutations of the original iterable.
Since:12.0
/** * Returns a {@link Collection} of all the permutations of the specified {@link Iterable}. * * <p><i>Notes:</i> This is an implementation of the algorithm for Lexicographical Permutations * Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7, * Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the * first permutation will be in ascending order, and the last will be in descending order. * * <p>Duplicate elements are considered equal. For example, the list [1, 1] will have only one * permutation, instead of two. This is why the elements have to implement {@link Comparable}. * * <p>An empty iterable has only one permutation, which is an empty list. * * <p>This method is equivalent to {@code Collections2.orderedPermutations(list, * Ordering.natural())}. * * @param elements the original iterable whose elements have to be permuted. * @return an immutable {@link Collection} containing all the different permutations of the * original iterable. * @throws NullPointerException if the specified iterable is null or has any null elements. * @since 12.0 */
@Beta public static <E extends Comparable<? super E>> Collection<List<E>> orderedPermutations( Iterable<E> elements) { return orderedPermutations(elements, Ordering.natural()); }
Returns a Collection of all the permutations of the specified Iterable using the specified Comparator for establishing the lexicographical ordering.

Examples:


for (List<String> perm : orderedPermutations(asList("b", "c", "a"))) {
  println(perm);
 }
// -> ["a", "b", "c"]
// -> ["a", "c", "b"]
// -> ["b", "a", "c"]
// -> ["b", "c", "a"]
// -> ["c", "a", "b"]
// -> ["c", "b", "a"]
for (List<Integer> perm : orderedPermutations(asList(1, 2, 2, 1))) {
  println(perm);
 }
// -> [1, 1, 2, 2]
// -> [1, 2, 1, 2]
// -> [1, 2, 2, 1]
// -> [2, 1, 1, 2]
// -> [2, 1, 2, 1]
// -> [2, 2, 1, 1]

Notes: This is an implementation of the algorithm for Lexicographical Permutations Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the first permutation will be in ascending order, and the last will be in descending order.

Elements that compare equal are considered equal and no new permutations are created by swapping them.

An empty iterable has only one permutation, which is an empty list.

Params:
  • elements – the original iterable whose elements have to be permuted.
  • comparator – a comparator for the iterable's elements.
Throws:
  • NullPointerException – If the specified iterable is null, has any null elements, or if the specified comparator is null.
Returns:an immutable Collection containing all the different permutations of the original iterable.
Since:12.0
/** * Returns a {@link Collection} of all the permutations of the specified {@link Iterable} using * the specified {@link Comparator} for establishing the lexicographical ordering. * * <p>Examples: * * <pre>{@code * for (List<String> perm : orderedPermutations(asList("b", "c", "a"))) { * println(perm); * } * // -> ["a", "b", "c"] * // -> ["a", "c", "b"] * // -> ["b", "a", "c"] * // -> ["b", "c", "a"] * // -> ["c", "a", "b"] * // -> ["c", "b", "a"] * * for (List<Integer> perm : orderedPermutations(asList(1, 2, 2, 1))) { * println(perm); * } * // -> [1, 1, 2, 2] * // -> [1, 2, 1, 2] * // -> [1, 2, 2, 1] * // -> [2, 1, 1, 2] * // -> [2, 1, 2, 1] * // -> [2, 2, 1, 1] * }</pre> * * <p><i>Notes:</i> This is an implementation of the algorithm for Lexicographical Permutations * Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7, * Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the * first permutation will be in ascending order, and the last will be in descending order. * * <p>Elements that compare equal are considered equal and no new permutations are created by * swapping them. * * <p>An empty iterable has only one permutation, which is an empty list. * * @param elements the original iterable whose elements have to be permuted. * @param comparator a comparator for the iterable's elements. * @return an immutable {@link Collection} containing all the different permutations of the * original iterable. * @throws NullPointerException If the specified iterable is null, has any null elements, or if * the specified comparator is null. * @since 12.0 */
@Beta public static <E> Collection<List<E>> orderedPermutations( Iterable<E> elements, Comparator<? super E> comparator) { return new OrderedPermutationCollection<E>(elements, comparator); } private static final class OrderedPermutationCollection<E> extends AbstractCollection<List<E>> { final ImmutableList<E> inputList; final Comparator<? super E> comparator; final int size; OrderedPermutationCollection(Iterable<E> input, Comparator<? super E> comparator) { this.inputList = ImmutableList.sortedCopyOf(comparator, input); this.comparator = comparator; this.size = calculateSize(inputList, comparator); }
The number of permutations with repeated elements is calculated as follows:
  • For an empty list, it is 1 (base case).
  • When r numbers are added to a list of n-r elements, the number of permutations is increased by a factor of (n choose r).
/** * The number of permutations with repeated elements is calculated as follows: * * <ul> * <li>For an empty list, it is 1 (base case). * <li>When r numbers are added to a list of n-r elements, the number of permutations is * increased by a factor of (n choose r). * </ul> */
private static <E> int calculateSize( List<E> sortedInputList, Comparator<? super E> comparator) { int permutations = 1; int n = 1; int r = 1; while (n < sortedInputList.size()) { int comparison = comparator.compare(sortedInputList.get(n - 1), sortedInputList.get(n)); if (comparison < 0) { // We move to the next non-repeated element. permutations = IntMath.saturatedMultiply(permutations, IntMath.binomial(n, r)); r = 0; if (permutations == Integer.MAX_VALUE) { return Integer.MAX_VALUE; } } n++; r++; } return IntMath.saturatedMultiply(permutations, IntMath.binomial(n, r)); } @Override public int size() { return size; } @Override public boolean isEmpty() { return false; } @Override public Iterator<List<E>> iterator() { return new OrderedPermutationIterator<E>(inputList, comparator); } @Override public boolean contains(@Nullable Object obj) { if (obj instanceof List) { List<?> list = (List<?>) obj; return isPermutation(inputList, list); } return false; } @Override public String toString() { return "orderedPermutationCollection(" + inputList + ")"; } } private static final class OrderedPermutationIterator<E> extends AbstractIterator<List<E>> { @Nullable List<E> nextPermutation; final Comparator<? super E> comparator; OrderedPermutationIterator(List<E> list, Comparator<? super E> comparator) { this.nextPermutation = Lists.newArrayList(list); this.comparator = comparator; } @Override protected List<E> computeNext() { if (nextPermutation == null) { return endOfData(); } ImmutableList<E> next = ImmutableList.copyOf(nextPermutation); calculateNextPermutation(); return next; } void calculateNextPermutation() { int j = findNextJ(); if (j == -1) { nextPermutation = null; return; } int l = findNextL(j); Collections.swap(nextPermutation, j, l); int n = nextPermutation.size(); Collections.reverse(nextPermutation.subList(j + 1, n)); } int findNextJ() { for (int k = nextPermutation.size() - 2; k >= 0; k--) { if (comparator.compare(nextPermutation.get(k), nextPermutation.get(k + 1)) < 0) { return k; } } return -1; } int findNextL(int j) { E ak = nextPermutation.get(j); for (int l = nextPermutation.size() - 1; l > j; l--) { if (comparator.compare(ak, nextPermutation.get(l)) < 0) { return l; } } throw new AssertionError("this statement should be unreachable"); } }
Returns a Collection of all the permutations of the specified Collection.

Notes: This is an implementation of the Plain Changes algorithm for permutations generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2.

If the input list contains equal elements, some of the generated permutations will be equal.

An empty collection has only one permutation, which is an empty list.

Params:
  • elements – the original collection whose elements have to be permuted.
Throws:
Returns:an immutable Collection containing all the different permutations of the original collection.
Since:12.0
/** * Returns a {@link Collection} of all the permutations of the specified {@link Collection}. * * <p><i>Notes:</i> This is an implementation of the Plain Changes algorithm for permutations * generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7, * Section 7.2.1.2. * * <p>If the input list contains equal elements, some of the generated permutations will be equal. * * <p>An empty collection has only one permutation, which is an empty list. * * @param elements the original collection whose elements have to be permuted. * @return an immutable {@link Collection} containing all the different permutations of the * original collection. * @throws NullPointerException if the specified collection is null or has any null elements. * @since 12.0 */
@Beta public static <E> Collection<List<E>> permutations(Collection<E> elements) { return new PermutationCollection<E>(ImmutableList.copyOf(elements)); } private static final class PermutationCollection<E> extends AbstractCollection<List<E>> { final ImmutableList<E> inputList; PermutationCollection(ImmutableList<E> input) { this.inputList = input; } @Override public int size() { return IntMath.factorial(inputList.size()); } @Override public boolean isEmpty() { return false; } @Override public Iterator<List<E>> iterator() { return new PermutationIterator<E>(inputList); } @Override public boolean contains(@Nullable Object obj) { if (obj instanceof List) { List<?> list = (List<?>) obj; return isPermutation(inputList, list); } return false; } @Override public String toString() { return "permutations(" + inputList + ")"; } } private static class PermutationIterator<E> extends AbstractIterator<List<E>> { final List<E> list; final int[] c; final int[] o; int j; PermutationIterator(List<E> list) { this.list = new ArrayList<E>(list); int n = list.size(); c = new int[n]; o = new int[n]; Arrays.fill(c, 0); Arrays.fill(o, 1); j = Integer.MAX_VALUE; } @Override protected List<E> computeNext() { if (j <= 0) { return endOfData(); } ImmutableList<E> next = ImmutableList.copyOf(list); calculateNextPermutation(); return next; } void calculateNextPermutation() { j = list.size() - 1; int s = 0; // Handle the special case of an empty list. Skip the calculation of the // next permutation. if (j == -1) { return; } while (true) { int q = c[j] + o[j]; if (q < 0) { switchDirection(); continue; } if (q == j + 1) { if (j == 0) { break; } s++; switchDirection(); continue; } Collections.swap(list, j - c[j] + s, j - q + s); c[j] = q; break; } } void switchDirection() { o[j] = -o[j]; j--; } }
Returns true if the second list is a permutation of the first.
/** Returns {@code true} if the second list is a permutation of the first. */
private static boolean isPermutation(List<?> first, List<?> second) { if (first.size() != second.size()) { return false; } Multiset<?> firstMultiset = HashMultiset.create(first); Multiset<?> secondMultiset = HashMultiset.create(second); return firstMultiset.equals(secondMultiset); } }