/*
 * Copyright (C) 2013 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.base;

import static com.google.common.base.Preconditions.checkPositionIndexes;
import static java.lang.Character.MAX_SURROGATE;
import static java.lang.Character.MIN_SURROGATE;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;

Low-level, high-performance utility methods related to the UTF-8 character encoding. UTF-8 is defined in section D92 of The Unicode Standard Core Specification, Chapter 3.

The variant of UTF-8 implemented by this class is the restricted definition of UTF-8 introduced in Unicode 3.1. One implication of this is that it rejects "non-shortest form" byte sequences, even though the JDK decoder may accept them.

Author:Martin Buchholz, Clément Roux
Since:16.0
/** * Low-level, high-performance utility methods related to the {@linkplain Charsets#UTF_8 UTF-8} * character encoding. UTF-8 is defined in section D92 of <a * href="http://www.unicode.org/versions/Unicode6.2.0/ch03.pdf">The Unicode Standard Core * Specification, Chapter 3</a>. * * <p>The variant of UTF-8 implemented by this class is the restricted definition of UTF-8 * introduced in Unicode 3.1. One implication of this is that it rejects <a * href="http://www.unicode.org/versions/corrigendum1.html">"non-shortest form"</a> byte sequences, * even though the JDK decoder may accept them. * * @author Martin Buchholz * @author Clément Roux * @since 16.0 */
@Beta @GwtCompatible(emulated = true) public final class Utf8 {
Returns the number of bytes in the UTF-8-encoded form of sequence. For a string, this method is equivalent to string.getBytes(UTF_8).length, but is more efficient in both time and space.
Throws:
/** * Returns the number of bytes in the UTF-8-encoded form of {@code sequence}. For a string, this * method is equivalent to {@code string.getBytes(UTF_8).length}, but is more efficient in both * time and space. * * @throws IllegalArgumentException if {@code sequence} contains ill-formed UTF-16 (unpaired * surrogates) */
public static int encodedLength(CharSequence sequence) { // Warning to maintainers: this implementation is highly optimized. int utf16Length = sequence.length(); int utf8Length = utf16Length; int i = 0; // This loop optimizes for pure ASCII. while (i < utf16Length && sequence.charAt(i) < 0x80) { i++; } // This loop optimizes for chars less than 0x800. for (; i < utf16Length; i++) { char c = sequence.charAt(i); if (c < 0x800) { utf8Length += ((0x7f - c) >>> 31); // branch free! } else { utf8Length += encodedLengthGeneral(sequence, i); break; } } if (utf8Length < utf16Length) { // Necessary and sufficient condition for overflow because of maximum 3x expansion throw new IllegalArgumentException( "UTF-8 length does not fit in int: " + (utf8Length + (1L << 32))); } return utf8Length; } private static int encodedLengthGeneral(CharSequence sequence, int start) { int utf16Length = sequence.length(); int utf8Length = 0; for (int i = start; i < utf16Length; i++) { char c = sequence.charAt(i); if (c < 0x800) { utf8Length += (0x7f - c) >>> 31; // branch free! } else { utf8Length += 2; // jdk7+: if (Character.isSurrogate(c)) { if (MIN_SURROGATE <= c && c <= MAX_SURROGATE) { // Check that we have a well-formed surrogate pair. if (Character.codePointAt(sequence, i) == c) { throw new IllegalArgumentException(unpairedSurrogateMsg(i)); } i++; } } } return utf8Length; }
Returns true if bytes is a well-formed UTF-8 byte sequence according to Unicode 6.0. Note that this is a stronger criterion than simply whether the bytes can be decoded. For example, some versions of the JDK decoder will accept "non-shortest form" byte sequences, but encoding never reproduces these. Such byte sequences are not considered well-formed.

This method returns true if and only if Arrays.equals(bytes, new String(bytes, UTF_8).getBytes(UTF_8)) does, but is more efficient in both time and space.

/** * Returns {@code true} if {@code bytes} is a <i>well-formed</i> UTF-8 byte sequence according to * Unicode 6.0. Note that this is a stronger criterion than simply whether the bytes can be * decoded. For example, some versions of the JDK decoder will accept "non-shortest form" byte * sequences, but encoding never reproduces these. Such byte sequences are <i>not</i> considered * well-formed. * * <p>This method returns {@code true} if and only if {@code Arrays.equals(bytes, new * String(bytes, UTF_8).getBytes(UTF_8))} does, but is more efficient in both time and space. */
public static boolean isWellFormed(byte[] bytes) { return isWellFormed(bytes, 0, bytes.length); }
Returns whether the given byte array slice is a well-formed UTF-8 byte sequence, as defined by isWellFormed(byte[]). Note that this can be false even when isWellFormed(bytes) is true.
Params:
  • bytes – the input buffer
  • off – the offset in the buffer of the first byte to read
  • len – the number of bytes to read from the buffer
/** * Returns whether the given byte array slice is a well-formed UTF-8 byte sequence, as defined by * {@link #isWellFormed(byte[])}. Note that this can be false even when {@code * isWellFormed(bytes)} is true. * * @param bytes the input buffer * @param off the offset in the buffer of the first byte to read * @param len the number of bytes to read from the buffer */
public static boolean isWellFormed(byte[] bytes, int off, int len) { int end = off + len; checkPositionIndexes(off, end, bytes.length); // Look for the first non-ASCII character. for (int i = off; i < end; i++) { if (bytes[i] < 0) { return isWellFormedSlowPath(bytes, i, end); } } return true; } private static boolean isWellFormedSlowPath(byte[] bytes, int off, int end) { int index = off; while (true) { int byte1; // Optimize for interior runs of ASCII bytes. do { if (index >= end) { return true; } } while ((byte1 = bytes[index++]) >= 0); if (byte1 < (byte) 0xE0) { // Two-byte form. if (index == end) { return false; } // Simultaneously check for illegal trailing-byte in leading position // and overlong 2-byte form. if (byte1 < (byte) 0xC2 || bytes[index++] > (byte) 0xBF) { return false; } } else if (byte1 < (byte) 0xF0) { // Three-byte form. if (index + 1 >= end) { return false; } int byte2 = bytes[index++]; if (byte2 > (byte) 0xBF // Overlong? 5 most significant bits must not all be zero. || (byte1 == (byte) 0xE0 && byte2 < (byte) 0xA0) // Check for illegal surrogate codepoints. || (byte1 == (byte) 0xED && (byte) 0xA0 <= byte2) // Third byte trailing-byte test. || bytes[index++] > (byte) 0xBF) { return false; } } else { // Four-byte form. if (index + 2 >= end) { return false; } int byte2 = bytes[index++]; if (byte2 > (byte) 0xBF // Check that 1 <= plane <= 16. Tricky optimized form of: // if (byte1 > (byte) 0xF4 // || byte1 == (byte) 0xF0 && byte2 < (byte) 0x90 // || byte1 == (byte) 0xF4 && byte2 > (byte) 0x8F) || (((byte1 << 28) + (byte2 - (byte) 0x90)) >> 30) != 0 // Third byte trailing-byte test || bytes[index++] > (byte) 0xBF // Fourth byte trailing-byte test || bytes[index++] > (byte) 0xBF) { return false; } } } } private static String unpairedSurrogateMsg(int i) { return "Unpaired surrogate at index " + i; } private Utf8() {} }