// Copyright 2017 Google Inc.
// //
// // Licensed under the Apache License, Version 2.0 (the "License");
// // you may not use this file except in compliance with the License.
// // You may obtain a copy of the License at
// //
// //      http://www.apache.org/licenses/LICENSE-2.0
// //
// // Unless required by applicable law or agreed to in writing, software
// // distributed under the License is distributed on an "AS IS" BASIS,
// // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// // See the License for the specific language governing permissions and
// // limitations under the License.
// //
// ////////////////////////////////////////////////////////////////////////////////

package com.google.crypto.tink.subtle;

import com.google.crypto.tink.Aead;
import java.security.GeneralSecurityException;
import java.util.Arrays;
import javax.crypto.AEADBadTagException;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;

This class implements the EAX mode using AES.

EAX is an encryption mode proposed by Bellare, Rogaway and Wagner (http://web.cs.ucdavis.edu/~rogaway/papers/eax.pdf). The encryption mode is an alternative to CCM and has been proposed as a NIST standard: http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/eax/eax-spec.pdf

The parameter choices have been restricted to a small set of options:

  • The tag size is always 16 bytes
  • Nonces are chosen by the implementation at random. Their size is 12 or 16 bytes.

Plans: The current implementation is slow since it uses JCA and only assumes that the encryption modes "AES/ECB/NOPADDING" and "AES/CTR/NOPADDING" are implemented. Our plan is to implement a native version of EAX.

Since:1.0.0
/** * This class implements the EAX mode using AES. * * <p>EAX is an encryption mode proposed by Bellare, Rogaway and Wagner * (http://web.cs.ucdavis.edu/~rogaway/papers/eax.pdf). The encryption mode is an alternative to CCM * and has been proposed as a NIST standard: * http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/eax/eax-spec.pdf * * <p>The parameter choices have been restricted to a small set of options: * * <ul> * <li>The tag size is always 16 bytes * <li>Nonces are chosen by the implementation at random. Their size is 12 or 16 bytes. * </ul> * * <p>Plans: The current implementation is slow since it uses JCA and only assumes that the * encryption modes "AES/ECB/NOPADDING" and "AES/CTR/NOPADDING" are implemented. Our plan is to * implement a native version of EAX. * * @since 1.0.0 */
public final class AesEaxJce implements Aead { private static final ThreadLocal<Cipher> localEcbCipher = new ThreadLocal<Cipher>() { @Override protected Cipher initialValue() { try { return EngineFactory.CIPHER.getInstance("AES/ECB/NOPADDING"); } catch (GeneralSecurityException ex) { throw new IllegalStateException(ex); } } }; private static final ThreadLocal<Cipher> localCtrCipher = new ThreadLocal<Cipher>() { @Override protected Cipher initialValue() { try { return EngineFactory.CIPHER.getInstance("AES/CTR/NOPADDING"); } catch (GeneralSecurityException ex) { throw new IllegalStateException(ex); } } }; static final int BLOCK_SIZE_IN_BYTES = 16; static final int TAG_SIZE_IN_BYTES = 16; // The constants B and P derived from the key. These constants are used for computing an OMAC. private final byte[] b; private final byte[] p; private final SecretKeySpec keySpec; private final int ivSizeInBytes; @SuppressWarnings("InsecureCryptoUsage") public AesEaxJce(final byte[] key, int ivSizeInBytes) throws GeneralSecurityException { if (ivSizeInBytes != 12 && ivSizeInBytes != 16) { throw new IllegalArgumentException("IV size should be either 12 or 16 bytes"); } this.ivSizeInBytes = ivSizeInBytes; Validators.validateAesKeySize(key.length); keySpec = new SecretKeySpec(key, "AES"); Cipher ecb = localEcbCipher.get(); ecb.init(Cipher.ENCRYPT_MODE, keySpec); byte[] block = ecb.doFinal(new byte[BLOCK_SIZE_IN_BYTES]); b = multiplyByX(block); p = multiplyByX(b); }
Computes the xor of two byte arrays of equal size.
/** Computes the xor of two byte arrays of equal size. */
private static byte[] xor(final byte[] x, final byte[] y) { assert x.length == y.length; int len = x.length; byte[] res = new byte[len]; for (int i = 0; i < len; i++) { res[i] = (byte) (x[i] ^ y[i]); } return res; }
Multiplies an element of the field GF(2)[x]/(x^128+x^7+x^2+x+1) by x.
Params:
  • block – a 16 byte block representing an element of the field using big endian order.
/** * Multiplies an element of the field GF(2)[x]/(x^128+x^7+x^2+x+1) by x. * * @param block a 16 byte block representing an element of the field using big endian order. */
private static byte[] multiplyByX(final byte[] block) { byte[] res = new byte[BLOCK_SIZE_IN_BYTES]; for (int i = 0; i < BLOCK_SIZE_IN_BYTES - 1; i++) { // Shifts byte array by 1 bit (this is ugly because bytes in Java are signed) res[i] = (byte) (((block[i] << 1) ^ ((block[i + 1] & 0xff) >>> 7)) & 0xff); } // Shifts the least significant block by 1 bit and reduces the msb modulo the polynomial. res[BLOCK_SIZE_IN_BYTES - 1] = (byte) ((block[BLOCK_SIZE_IN_BYTES - 1] << 1) ^ ((block[0] & 0x80) == 0 ? 0 : 0x87)); return res; }
Pads the last block for OMAC. If the last block is smaller than 16 bytes then a bitstring starting with 1 and followed by 0's is appended and the result is XORed with p. If the last block is 16 bytes long then the last block is XORed with b.
Params:
  • data – A block or partial block of size 1 .. 16 bytes.
Returns:The padded block.
/** * Pads the last block for OMAC. If the last block is smaller than 16 bytes then a bitstring * starting with 1 and followed by 0's is appended and the result is XORed with p. If the last * block is 16 bytes long then the last block is XORed with b. * * @param data A block or partial block of size 1 .. 16 bytes. * @return The padded block. */
private byte[] pad(final byte[] data) { if (data.length == BLOCK_SIZE_IN_BYTES) { return xor(data, b); } else { byte[] res = Arrays.copyOf(p, BLOCK_SIZE_IN_BYTES); for (int i = 0; i < data.length; i++) { res[i] ^= data[i]; } res[data.length] = (byte) (res[data.length] ^ 0x80); return res; } }
Computes an OMAC.
Params:
  • ecb – A cipher initialized with the key of this class using AES/ECB/NOPadding and encryption mode.
  • tag – The OMAC tag (0 for nonce, 1 for aad, 2 for ciphertext)
  • data – The array containing the data to MAC.
  • offset – The start of the data to MAC.
  • length – The length of the data to MAC.
Throws:
Returns:The 16 byte long OMAC
/** * Computes an OMAC. * * @param ecb A cipher initialized with the key of this class using AES/ECB/NOPadding and * encryption mode. * @param tag The OMAC tag (0 for nonce, 1 for aad, 2 for ciphertext) * @param data The array containing the data to MAC. * @param offset The start of the data to MAC. * @param length The length of the data to MAC. * @return The 16 byte long OMAC * @throws IllegalBlockSizeException, BadPaddingException This should not happen. */
private byte[] omac(Cipher ecb, int tag, final byte[] data, int offset, int length) throws IllegalBlockSizeException, BadPaddingException { assert length >= 0; assert 0 <= tag && tag <= 3; byte[] block = new byte[BLOCK_SIZE_IN_BYTES]; block[BLOCK_SIZE_IN_BYTES - 1] = (byte) tag; if (length == 0) { return ecb.doFinal(xor(block, b)); } block = ecb.doFinal(block); int position = 0; while (length - position > BLOCK_SIZE_IN_BYTES) { for (int i = 0; i < BLOCK_SIZE_IN_BYTES; i++) { block[i] ^= data[offset + position + i]; } block = ecb.doFinal(block); position += BLOCK_SIZE_IN_BYTES; } byte[] padded = pad(Arrays.copyOfRange(data, offset + position, offset + length)); block = xor(block, padded); return ecb.doFinal(block); } @SuppressWarnings("InsecureCryptoUsage") @Override public byte[] encrypt(final byte[] plaintext, final byte[] associatedData) throws GeneralSecurityException { // Check that ciphertext is not longer than the max. size of a Java array. if (plaintext.length > Integer.MAX_VALUE - ivSizeInBytes - TAG_SIZE_IN_BYTES) { throw new GeneralSecurityException("plaintext too long"); } byte[] ciphertext = new byte[ivSizeInBytes + plaintext.length + TAG_SIZE_IN_BYTES]; byte[] iv = Random.randBytes(ivSizeInBytes); System.arraycopy(iv, 0, ciphertext, 0, ivSizeInBytes); Cipher ecb = localEcbCipher.get(); ecb.init(Cipher.ENCRYPT_MODE, keySpec); byte[] n = omac(ecb, 0, iv, 0, iv.length); byte[] aad = associatedData; if (aad == null) { aad = new byte[0]; } byte[] h = omac(ecb, 1, aad, 0, aad.length); Cipher ctr = localCtrCipher.get(); ctr.init(Cipher.ENCRYPT_MODE, keySpec, new IvParameterSpec(n)); ctr.doFinal(plaintext, 0, plaintext.length, ciphertext, ivSizeInBytes); byte[] t = omac(ecb, 2, ciphertext, ivSizeInBytes, plaintext.length); int offset = plaintext.length + ivSizeInBytes; for (int i = 0; i < TAG_SIZE_IN_BYTES; i++) { ciphertext[offset + i] = (byte) (h[i] ^ n[i] ^ t[i]); } return ciphertext; } @SuppressWarnings("InsecureCryptoUsage") @Override public byte[] decrypt(final byte[] ciphertext, final byte[] associatedData) throws GeneralSecurityException { int plaintextLength = ciphertext.length - ivSizeInBytes - TAG_SIZE_IN_BYTES; if (plaintextLength < 0) { throw new GeneralSecurityException("ciphertext too short"); } Cipher ecb = localEcbCipher.get(); ecb.init(Cipher.ENCRYPT_MODE, keySpec); byte[] n = omac(ecb, 0, ciphertext, 0, ivSizeInBytes); byte[] aad = associatedData; if (aad == null) { aad = new byte[0]; } byte[] h = omac(ecb, 1, aad, 0, aad.length); byte[] t = omac(ecb, 2, ciphertext, ivSizeInBytes, plaintextLength); byte res = 0; int offset = ciphertext.length - TAG_SIZE_IN_BYTES; for (int i = 0; i < TAG_SIZE_IN_BYTES; i++) { res = (byte) (res | (ciphertext[offset + i] ^ h[i] ^ n[i] ^ t[i])); } if (res != 0) { throw new AEADBadTagException("tag mismatch"); } Cipher ctr = localCtrCipher.get(); ctr.init(Cipher.ENCRYPT_MODE, keySpec, new IvParameterSpec(n)); return ctr.doFinal(ciphertext, ivSizeInBytes, plaintextLength); } }