/*
 * Copyright (C) 2018 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.util.apk;

import android.util.ArrayMap;
import android.util.Pair;

import java.io.FileDescriptor;
import java.io.IOException;
import java.io.RandomAccessFile;
import java.nio.BufferUnderflowException;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.security.DigestException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.spec.AlgorithmParameterSpec;
import java.security.spec.MGF1ParameterSpec;
import java.security.spec.PSSParameterSpec;
import java.util.Arrays;
import java.util.Map;

Utility class for an APK Signature Scheme using the APK Signing Block.
@hidefor internal use only.
/** * Utility class for an APK Signature Scheme using the APK Signing Block. * * @hide for internal use only. */
final class ApkSigningBlockUtils { private ApkSigningBlockUtils() { }
Returns the APK Signature Scheme block contained in the provided APK file and the additional information relevant for verifying the block against the file.
Params:
  • blockId – the ID value in the APK Signing Block's sequence of ID-value pairs identifying the appropriate block to find, e.g. the APK Signature Scheme v2 block ID.
Throws:
/** * Returns the APK Signature Scheme block contained in the provided APK file and the * additional information relevant for verifying the block against the file. * * @param blockId the ID value in the APK Signing Block's sequence of ID-value pairs * identifying the appropriate block to find, e.g. the APK Signature Scheme v2 * block ID. * * @throws SignatureNotFoundException if the APK is not signed using this scheme. * @throws IOException if an I/O error occurs while reading the APK file. */
static SignatureInfo findSignature(RandomAccessFile apk, int blockId) throws IOException, SignatureNotFoundException { // Find the ZIP End of Central Directory (EoCD) record. Pair<ByteBuffer, Long> eocdAndOffsetInFile = getEocd(apk); ByteBuffer eocd = eocdAndOffsetInFile.first; long eocdOffset = eocdAndOffsetInFile.second; if (ZipUtils.isZip64EndOfCentralDirectoryLocatorPresent(apk, eocdOffset)) { throw new SignatureNotFoundException("ZIP64 APK not supported"); } // Find the APK Signing Block. The block immediately precedes the Central Directory. long centralDirOffset = getCentralDirOffset(eocd, eocdOffset); Pair<ByteBuffer, Long> apkSigningBlockAndOffsetInFile = findApkSigningBlock(apk, centralDirOffset); ByteBuffer apkSigningBlock = apkSigningBlockAndOffsetInFile.first; long apkSigningBlockOffset = apkSigningBlockAndOffsetInFile.second; // Find the APK Signature Scheme Block inside the APK Signing Block. ByteBuffer apkSignatureSchemeBlock = findApkSignatureSchemeBlock(apkSigningBlock, blockId); return new SignatureInfo( apkSignatureSchemeBlock, apkSigningBlockOffset, centralDirOffset, eocdOffset, eocd); } static void verifyIntegrity( Map<Integer, byte[]> expectedDigests, RandomAccessFile apk, SignatureInfo signatureInfo) throws SecurityException { if (expectedDigests.isEmpty()) { throw new SecurityException("No digests provided"); } boolean neverVerified = true; Map<Integer, byte[]> expected1MbChunkDigests = new ArrayMap<>(); if (expectedDigests.containsKey(CONTENT_DIGEST_CHUNKED_SHA256)) { expected1MbChunkDigests.put(CONTENT_DIGEST_CHUNKED_SHA256, expectedDigests.get(CONTENT_DIGEST_CHUNKED_SHA256)); } if (expectedDigests.containsKey(CONTENT_DIGEST_CHUNKED_SHA512)) { expected1MbChunkDigests.put(CONTENT_DIGEST_CHUNKED_SHA512, expectedDigests.get(CONTENT_DIGEST_CHUNKED_SHA512)); } if (!expected1MbChunkDigests.isEmpty()) { try { verifyIntegrityFor1MbChunkBasedAlgorithm(expected1MbChunkDigests, apk.getFD(), signatureInfo); neverVerified = false; } catch (IOException e) { throw new SecurityException("Cannot get FD", e); } } if (expectedDigests.containsKey(CONTENT_DIGEST_VERITY_CHUNKED_SHA256)) { verifyIntegrityForVerityBasedAlgorithm( expectedDigests.get(CONTENT_DIGEST_VERITY_CHUNKED_SHA256), apk, signatureInfo); neverVerified = false; } if (neverVerified) { throw new SecurityException("No known digest exists for integrity check"); } } private static void verifyIntegrityFor1MbChunkBasedAlgorithm( Map<Integer, byte[]> expectedDigests, FileDescriptor apkFileDescriptor, SignatureInfo signatureInfo) throws SecurityException { // We need to verify the integrity of the following three sections of the file: // 1. Everything up to the start of the APK Signing Block. // 2. ZIP Central Directory. // 3. ZIP End of Central Directory (EoCD). // Each of these sections is represented as a separate DataSource instance below. // To handle large APKs, these sections are read in 1 MB chunks using memory-mapped I/O to // avoid wasting physical memory. In most APK verification scenarios, the contents of the // APK are already there in the OS's page cache and thus mmap does not use additional // physical memory. DataSource beforeApkSigningBlock = new MemoryMappedFileDataSource(apkFileDescriptor, 0, signatureInfo.apkSigningBlockOffset); DataSource centralDir = new MemoryMappedFileDataSource( apkFileDescriptor, signatureInfo.centralDirOffset, signatureInfo.eocdOffset - signatureInfo.centralDirOffset); // For the purposes of integrity verification, ZIP End of Central Directory's field Start of // Central Directory must be considered to point to the offset of the APK Signing Block. ByteBuffer eocdBuf = signatureInfo.eocd.duplicate(); eocdBuf.order(ByteOrder.LITTLE_ENDIAN); ZipUtils.setZipEocdCentralDirectoryOffset(eocdBuf, signatureInfo.apkSigningBlockOffset); DataSource eocd = new ByteBufferDataSource(eocdBuf); int[] digestAlgorithms = new int[expectedDigests.size()]; int digestAlgorithmCount = 0; for (int digestAlgorithm : expectedDigests.keySet()) { digestAlgorithms[digestAlgorithmCount] = digestAlgorithm; digestAlgorithmCount++; } byte[][] actualDigests; try { actualDigests = computeContentDigestsPer1MbChunk( digestAlgorithms, new DataSource[] {beforeApkSigningBlock, centralDir, eocd}); } catch (DigestException e) { throw new SecurityException("Failed to compute digest(s) of contents", e); } for (int i = 0; i < digestAlgorithms.length; i++) { int digestAlgorithm = digestAlgorithms[i]; byte[] expectedDigest = expectedDigests.get(digestAlgorithm); byte[] actualDigest = actualDigests[i]; if (!MessageDigest.isEqual(expectedDigest, actualDigest)) { throw new SecurityException( getContentDigestAlgorithmJcaDigestAlgorithm(digestAlgorithm) + " digest of contents did not verify"); } } } private static byte[][] computeContentDigestsPer1MbChunk( int[] digestAlgorithms, DataSource[] contents) throws DigestException { // For each digest algorithm the result is computed as follows: // 1. Each segment of contents is split into consecutive chunks of 1 MB in size. // The final chunk will be shorter iff the length of segment is not a multiple of 1 MB. // No chunks are produced for empty (zero length) segments. // 2. The digest of each chunk is computed over the concatenation of byte 0xa5, the chunk's // length in bytes (uint32 little-endian) and the chunk's contents. // 3. The output digest is computed over the concatenation of the byte 0x5a, the number of // chunks (uint32 little-endian) and the concatenation of digests of chunks of all // segments in-order. long totalChunkCountLong = 0; for (DataSource input : contents) { totalChunkCountLong += getChunkCount(input.size()); } if (totalChunkCountLong >= Integer.MAX_VALUE / 1024) { throw new DigestException("Too many chunks: " + totalChunkCountLong); } int totalChunkCount = (int) totalChunkCountLong; byte[][] digestsOfChunks = new byte[digestAlgorithms.length][]; for (int i = 0; i < digestAlgorithms.length; i++) { int digestAlgorithm = digestAlgorithms[i]; int digestOutputSizeBytes = getContentDigestAlgorithmOutputSizeBytes(digestAlgorithm); byte[] concatenationOfChunkCountAndChunkDigests = new byte[5 + totalChunkCount * digestOutputSizeBytes]; concatenationOfChunkCountAndChunkDigests[0] = 0x5a; setUnsignedInt32LittleEndian( totalChunkCount, concatenationOfChunkCountAndChunkDigests, 1); digestsOfChunks[i] = concatenationOfChunkCountAndChunkDigests; } byte[] chunkContentPrefix = new byte[5]; chunkContentPrefix[0] = (byte) 0xa5; int chunkIndex = 0; MessageDigest[] mds = new MessageDigest[digestAlgorithms.length]; for (int i = 0; i < digestAlgorithms.length; i++) { String jcaAlgorithmName = getContentDigestAlgorithmJcaDigestAlgorithm(digestAlgorithms[i]); try { mds[i] = MessageDigest.getInstance(jcaAlgorithmName); } catch (NoSuchAlgorithmException e) { throw new RuntimeException(jcaAlgorithmName + " digest not supported", e); } } // TODO: Compute digests of chunks in parallel when beneficial. This requires some research // into how to parallelize (if at all) based on the capabilities of the hardware on which // this code is running and based on the size of input. DataDigester digester = new MultipleDigestDataDigester(mds); int dataSourceIndex = 0; for (DataSource input : contents) { long inputOffset = 0; long inputRemaining = input.size(); while (inputRemaining > 0) { int chunkSize = (int) Math.min(inputRemaining, CHUNK_SIZE_BYTES); setUnsignedInt32LittleEndian(chunkSize, chunkContentPrefix, 1); for (int i = 0; i < mds.length; i++) { mds[i].update(chunkContentPrefix); } try { input.feedIntoDataDigester(digester, inputOffset, chunkSize); } catch (IOException e) { throw new DigestException( "Failed to digest chunk #" + chunkIndex + " of section #" + dataSourceIndex, e); } for (int i = 0; i < digestAlgorithms.length; i++) { int digestAlgorithm = digestAlgorithms[i]; byte[] concatenationOfChunkCountAndChunkDigests = digestsOfChunks[i]; int expectedDigestSizeBytes = getContentDigestAlgorithmOutputSizeBytes(digestAlgorithm); MessageDigest md = mds[i]; int actualDigestSizeBytes = md.digest( concatenationOfChunkCountAndChunkDigests, 5 + chunkIndex * expectedDigestSizeBytes, expectedDigestSizeBytes); if (actualDigestSizeBytes != expectedDigestSizeBytes) { throw new RuntimeException( "Unexpected output size of " + md.getAlgorithm() + " digest: " + actualDigestSizeBytes); } } inputOffset += chunkSize; inputRemaining -= chunkSize; chunkIndex++; } dataSourceIndex++; } byte[][] result = new byte[digestAlgorithms.length][]; for (int i = 0; i < digestAlgorithms.length; i++) { int digestAlgorithm = digestAlgorithms[i]; byte[] input = digestsOfChunks[i]; String jcaAlgorithmName = getContentDigestAlgorithmJcaDigestAlgorithm(digestAlgorithm); MessageDigest md; try { md = MessageDigest.getInstance(jcaAlgorithmName); } catch (NoSuchAlgorithmException e) { throw new RuntimeException(jcaAlgorithmName + " digest not supported", e); } byte[] output = md.digest(input); result[i] = output; } return result; }
Return the verity digest only if the length of digest content looks correct. When verity digest is generated, the last incomplete 4k chunk is padded with 0s before hashing. This means two almost identical APKs with different number of 0 at the end will have the same verity digest. To avoid this problem, the length of the source content (excluding Signing Block) is appended to the verity digest, and the digest is returned only if the length is consistent to the current APK.
/** * Return the verity digest only if the length of digest content looks correct. * When verity digest is generated, the last incomplete 4k chunk is padded with 0s before * hashing. This means two almost identical APKs with different number of 0 at the end will have * the same verity digest. To avoid this problem, the length of the source content (excluding * Signing Block) is appended to the verity digest, and the digest is returned only if the * length is consistent to the current APK. */
static byte[] parseVerityDigestAndVerifySourceLength( byte[] data, long fileSize, SignatureInfo signatureInfo) throws SecurityException { // FORMAT: // OFFSET DATA TYPE DESCRIPTION // * @+0 bytes uint8[32] Merkle tree root hash of SHA-256 // * @+32 bytes int64 Length of source data int kRootHashSize = 32; int kSourceLengthSize = 8; if (data.length != kRootHashSize + kSourceLengthSize) { throw new SecurityException("Verity digest size is wrong: " + data.length); } ByteBuffer buffer = ByteBuffer.wrap(data).order(ByteOrder.LITTLE_ENDIAN); buffer.position(kRootHashSize); long expectedSourceLength = buffer.getLong(); long signingBlockSize = signatureInfo.centralDirOffset - signatureInfo.apkSigningBlockOffset; if (expectedSourceLength != fileSize - signingBlockSize) { throw new SecurityException("APK content size did not verify"); } return Arrays.copyOfRange(data, 0, kRootHashSize); } private static void verifyIntegrityForVerityBasedAlgorithm( byte[] expectedDigest, RandomAccessFile apk, SignatureInfo signatureInfo) throws SecurityException { try { byte[] expectedRootHash = parseVerityDigestAndVerifySourceLength(expectedDigest, apk.length(), signatureInfo); ApkVerityBuilder.ApkVerityResult verity = ApkVerityBuilder.generateApkVerity(apk, signatureInfo, new ByteBufferFactory() { @Override public ByteBuffer create(int capacity) { return ByteBuffer.allocate(capacity); } }); if (!Arrays.equals(expectedRootHash, verity.rootHash)) { throw new SecurityException("APK verity digest of contents did not verify"); } } catch (DigestException | IOException | NoSuchAlgorithmException e) { throw new SecurityException("Error during verification", e); } }
Generates the fsverity header and hash tree to be used by kernel for the given apk. This method does not check whether the root hash exists in the Signing Block or not.

The output is stored in the ByteBuffer created by the given ByteBufferFactory.

Returns:the root hash of the generated hash tree.
/** * Generates the fsverity header and hash tree to be used by kernel for the given apk. This * method does not check whether the root hash exists in the Signing Block or not. * * <p>The output is stored in the {@link ByteBuffer} created by the given {@link * ByteBufferFactory}. * * @return the root hash of the generated hash tree. */
public static byte[] generateApkVerity(String apkPath, ByteBufferFactory bufferFactory, SignatureInfo signatureInfo) throws IOException, SignatureNotFoundException, SecurityException, DigestException, NoSuchAlgorithmException { try (RandomAccessFile apk = new RandomAccessFile(apkPath, "r")) { ApkVerityBuilder.ApkVerityResult result = ApkVerityBuilder.generateApkVerity(apk, signatureInfo, bufferFactory); return result.rootHash; } }
Returns the ZIP End of Central Directory (EoCD) and its offset in the file.
Throws:
/** * Returns the ZIP End of Central Directory (EoCD) and its offset in the file. * * @throws IOException if an I/O error occurs while reading the file. * @throws SignatureNotFoundException if the EoCD could not be found. */
static Pair<ByteBuffer, Long> getEocd(RandomAccessFile apk) throws IOException, SignatureNotFoundException { Pair<ByteBuffer, Long> eocdAndOffsetInFile = ZipUtils.findZipEndOfCentralDirectoryRecord(apk); if (eocdAndOffsetInFile == null) { throw new SignatureNotFoundException( "Not an APK file: ZIP End of Central Directory record not found"); } return eocdAndOffsetInFile; } static long getCentralDirOffset(ByteBuffer eocd, long eocdOffset) throws SignatureNotFoundException { // Look up the offset of ZIP Central Directory. long centralDirOffset = ZipUtils.getZipEocdCentralDirectoryOffset(eocd); if (centralDirOffset > eocdOffset) { throw new SignatureNotFoundException( "ZIP Central Directory offset out of range: " + centralDirOffset + ". ZIP End of Central Directory offset: " + eocdOffset); } long centralDirSize = ZipUtils.getZipEocdCentralDirectorySizeBytes(eocd); if (centralDirOffset + centralDirSize != eocdOffset) { throw new SignatureNotFoundException( "ZIP Central Directory is not immediately followed by End of Central" + " Directory"); } return centralDirOffset; } private static long getChunkCount(long inputSizeBytes) { return (inputSizeBytes + CHUNK_SIZE_BYTES - 1) / CHUNK_SIZE_BYTES; } private static final int CHUNK_SIZE_BYTES = 1024 * 1024; static final int SIGNATURE_RSA_PSS_WITH_SHA256 = 0x0101; static final int SIGNATURE_RSA_PSS_WITH_SHA512 = 0x0102; static final int SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA256 = 0x0103; static final int SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA512 = 0x0104; static final int SIGNATURE_ECDSA_WITH_SHA256 = 0x0201; static final int SIGNATURE_ECDSA_WITH_SHA512 = 0x0202; static final int SIGNATURE_DSA_WITH_SHA256 = 0x0301; static final int SIGNATURE_VERITY_RSA_PKCS1_V1_5_WITH_SHA256 = 0x0421; static final int SIGNATURE_VERITY_ECDSA_WITH_SHA256 = 0x0423; static final int SIGNATURE_VERITY_DSA_WITH_SHA256 = 0x0425; static final int CONTENT_DIGEST_CHUNKED_SHA256 = 1; static final int CONTENT_DIGEST_CHUNKED_SHA512 = 2; static final int CONTENT_DIGEST_VERITY_CHUNKED_SHA256 = 3; static int compareSignatureAlgorithm(int sigAlgorithm1, int sigAlgorithm2) { int digestAlgorithm1 = getSignatureAlgorithmContentDigestAlgorithm(sigAlgorithm1); int digestAlgorithm2 = getSignatureAlgorithmContentDigestAlgorithm(sigAlgorithm2); return compareContentDigestAlgorithm(digestAlgorithm1, digestAlgorithm2); } private static int compareContentDigestAlgorithm(int digestAlgorithm1, int digestAlgorithm2) { switch (digestAlgorithm1) { case CONTENT_DIGEST_CHUNKED_SHA256: switch (digestAlgorithm2) { case CONTENT_DIGEST_CHUNKED_SHA256: return 0; case CONTENT_DIGEST_CHUNKED_SHA512: case CONTENT_DIGEST_VERITY_CHUNKED_SHA256: return -1; default: throw new IllegalArgumentException( "Unknown digestAlgorithm2: " + digestAlgorithm2); } case CONTENT_DIGEST_CHUNKED_SHA512: switch (digestAlgorithm2) { case CONTENT_DIGEST_CHUNKED_SHA256: case CONTENT_DIGEST_VERITY_CHUNKED_SHA256: return 1; case CONTENT_DIGEST_CHUNKED_SHA512: return 0; default: throw new IllegalArgumentException( "Unknown digestAlgorithm2: " + digestAlgorithm2); } case CONTENT_DIGEST_VERITY_CHUNKED_SHA256: switch (digestAlgorithm2) { case CONTENT_DIGEST_CHUNKED_SHA512: return -1; case CONTENT_DIGEST_VERITY_CHUNKED_SHA256: return 0; case CONTENT_DIGEST_CHUNKED_SHA256: return 1; default: throw new IllegalArgumentException( "Unknown digestAlgorithm2: " + digestAlgorithm2); } default: throw new IllegalArgumentException("Unknown digestAlgorithm1: " + digestAlgorithm1); } } static int getSignatureAlgorithmContentDigestAlgorithm(int sigAlgorithm) { switch (sigAlgorithm) { case SIGNATURE_RSA_PSS_WITH_SHA256: case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA256: case SIGNATURE_ECDSA_WITH_SHA256: case SIGNATURE_DSA_WITH_SHA256: return CONTENT_DIGEST_CHUNKED_SHA256; case SIGNATURE_RSA_PSS_WITH_SHA512: case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA512: case SIGNATURE_ECDSA_WITH_SHA512: return CONTENT_DIGEST_CHUNKED_SHA512; case SIGNATURE_VERITY_RSA_PKCS1_V1_5_WITH_SHA256: case SIGNATURE_VERITY_ECDSA_WITH_SHA256: case SIGNATURE_VERITY_DSA_WITH_SHA256: return CONTENT_DIGEST_VERITY_CHUNKED_SHA256; default: throw new IllegalArgumentException( "Unknown signature algorithm: 0x" + Long.toHexString(sigAlgorithm & 0xffffffff)); } } static String getContentDigestAlgorithmJcaDigestAlgorithm(int digestAlgorithm) { switch (digestAlgorithm) { case CONTENT_DIGEST_CHUNKED_SHA256: case CONTENT_DIGEST_VERITY_CHUNKED_SHA256: return "SHA-256"; case CONTENT_DIGEST_CHUNKED_SHA512: return "SHA-512"; default: throw new IllegalArgumentException( "Unknown content digest algorthm: " + digestAlgorithm); } } private static int getContentDigestAlgorithmOutputSizeBytes(int digestAlgorithm) { switch (digestAlgorithm) { case CONTENT_DIGEST_CHUNKED_SHA256: case CONTENT_DIGEST_VERITY_CHUNKED_SHA256: return 256 / 8; case CONTENT_DIGEST_CHUNKED_SHA512: return 512 / 8; default: throw new IllegalArgumentException( "Unknown content digest algorthm: " + digestAlgorithm); } } static String getSignatureAlgorithmJcaKeyAlgorithm(int sigAlgorithm) { switch (sigAlgorithm) { case SIGNATURE_RSA_PSS_WITH_SHA256: case SIGNATURE_RSA_PSS_WITH_SHA512: case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA256: case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA512: case SIGNATURE_VERITY_RSA_PKCS1_V1_5_WITH_SHA256: return "RSA"; case SIGNATURE_ECDSA_WITH_SHA256: case SIGNATURE_ECDSA_WITH_SHA512: case SIGNATURE_VERITY_ECDSA_WITH_SHA256: return "EC"; case SIGNATURE_DSA_WITH_SHA256: case SIGNATURE_VERITY_DSA_WITH_SHA256: return "DSA"; default: throw new IllegalArgumentException( "Unknown signature algorithm: 0x" + Long.toHexString(sigAlgorithm & 0xffffffff)); } } static Pair<String, ? extends AlgorithmParameterSpec> getSignatureAlgorithmJcaSignatureAlgorithm(int sigAlgorithm) { switch (sigAlgorithm) { case SIGNATURE_RSA_PSS_WITH_SHA256: return Pair.create( "SHA256withRSA/PSS", new PSSParameterSpec( "SHA-256", "MGF1", MGF1ParameterSpec.SHA256, 256 / 8, 1)); case SIGNATURE_RSA_PSS_WITH_SHA512: return Pair.create( "SHA512withRSA/PSS", new PSSParameterSpec( "SHA-512", "MGF1", MGF1ParameterSpec.SHA512, 512 / 8, 1)); case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA256: case SIGNATURE_VERITY_RSA_PKCS1_V1_5_WITH_SHA256: return Pair.create("SHA256withRSA", null); case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA512: return Pair.create("SHA512withRSA", null); case SIGNATURE_ECDSA_WITH_SHA256: case SIGNATURE_VERITY_ECDSA_WITH_SHA256: return Pair.create("SHA256withECDSA", null); case SIGNATURE_ECDSA_WITH_SHA512: return Pair.create("SHA512withECDSA", null); case SIGNATURE_DSA_WITH_SHA256: case SIGNATURE_VERITY_DSA_WITH_SHA256: return Pair.create("SHA256withDSA", null); default: throw new IllegalArgumentException( "Unknown signature algorithm: 0x" + Long.toHexString(sigAlgorithm & 0xffffffff)); } }
Returns new byte buffer whose content is a shared subsequence of this buffer's content between the specified start (inclusive) and end (exclusive) positions. As opposed to ByteBuffer.slice(), the returned buffer's byte order is the same as the source buffer's byte order.
/** * Returns new byte buffer whose content is a shared subsequence of this buffer's content * between the specified start (inclusive) and end (exclusive) positions. As opposed to * {@link ByteBuffer#slice()}, the returned buffer's byte order is the same as the source * buffer's byte order. */
static ByteBuffer sliceFromTo(ByteBuffer source, int start, int end) { if (start < 0) { throw new IllegalArgumentException("start: " + start); } if (end < start) { throw new IllegalArgumentException("end < start: " + end + " < " + start); } int capacity = source.capacity(); if (end > source.capacity()) { throw new IllegalArgumentException("end > capacity: " + end + " > " + capacity); } int originalLimit = source.limit(); int originalPosition = source.position(); try { source.position(0); source.limit(end); source.position(start); ByteBuffer result = source.slice(); result.order(source.order()); return result; } finally { source.position(0); source.limit(originalLimit); source.position(originalPosition); } }
Relative get method for reading size number of bytes from the current position of this buffer.

This method reads the next size bytes at this buffer's current position, returning them as a ByteBuffer with start set to 0, limit and capacity set to size, byte order set to this buffer's byte order; and then increments the position by size.

/** * Relative <em>get</em> method for reading {@code size} number of bytes from the current * position of this buffer. * * <p>This method reads the next {@code size} bytes at this buffer's current position, * returning them as a {@code ByteBuffer} with start set to 0, limit and capacity set to * {@code size}, byte order set to this buffer's byte order; and then increments the position by * {@code size}. */
static ByteBuffer getByteBuffer(ByteBuffer source, int size) throws BufferUnderflowException { if (size < 0) { throw new IllegalArgumentException("size: " + size); } int originalLimit = source.limit(); int position = source.position(); int limit = position + size; if ((limit < position) || (limit > originalLimit)) { throw new BufferUnderflowException(); } source.limit(limit); try { ByteBuffer result = source.slice(); result.order(source.order()); source.position(limit); return result; } finally { source.limit(originalLimit); } } static ByteBuffer getLengthPrefixedSlice(ByteBuffer source) throws IOException { if (source.remaining() < 4) { throw new IOException( "Remaining buffer too short to contain length of length-prefixed field." + " Remaining: " + source.remaining()); } int len = source.getInt(); if (len < 0) { throw new IllegalArgumentException("Negative length"); } else if (len > source.remaining()) { throw new IOException("Length-prefixed field longer than remaining buffer." + " Field length: " + len + ", remaining: " + source.remaining()); } return getByteBuffer(source, len); } static byte[] readLengthPrefixedByteArray(ByteBuffer buf) throws IOException { int len = buf.getInt(); if (len < 0) { throw new IOException("Negative length"); } else if (len > buf.remaining()) { throw new IOException("Underflow while reading length-prefixed value. Length: " + len + ", available: " + buf.remaining()); } byte[] result = new byte[len]; buf.get(result); return result; } static void setUnsignedInt32LittleEndian(int value, byte[] result, int offset) { result[offset] = (byte) (value & 0xff); result[offset + 1] = (byte) ((value >>> 8) & 0xff); result[offset + 2] = (byte) ((value >>> 16) & 0xff); result[offset + 3] = (byte) ((value >>> 24) & 0xff); } private static final long APK_SIG_BLOCK_MAGIC_HI = 0x3234206b636f6c42L; private static final long APK_SIG_BLOCK_MAGIC_LO = 0x20676953204b5041L; private static final int APK_SIG_BLOCK_MIN_SIZE = 32; static Pair<ByteBuffer, Long> findApkSigningBlock( RandomAccessFile apk, long centralDirOffset) throws IOException, SignatureNotFoundException { // FORMAT: // OFFSET DATA TYPE DESCRIPTION // * @+0 bytes uint64: size in bytes (excluding this field) // * @+8 bytes payload // * @-24 bytes uint64: size in bytes (same as the one above) // * @-16 bytes uint128: magic if (centralDirOffset < APK_SIG_BLOCK_MIN_SIZE) { throw new SignatureNotFoundException( "APK too small for APK Signing Block. ZIP Central Directory offset: " + centralDirOffset); } // Read the magic and offset in file from the footer section of the block: // * uint64: size of block // * 16 bytes: magic ByteBuffer footer = ByteBuffer.allocate(24); footer.order(ByteOrder.LITTLE_ENDIAN); apk.seek(centralDirOffset - footer.capacity()); apk.readFully(footer.array(), footer.arrayOffset(), footer.capacity()); if ((footer.getLong(8) != APK_SIG_BLOCK_MAGIC_LO) || (footer.getLong(16) != APK_SIG_BLOCK_MAGIC_HI)) { throw new SignatureNotFoundException( "No APK Signing Block before ZIP Central Directory"); } // Read and compare size fields long apkSigBlockSizeInFooter = footer.getLong(0); if ((apkSigBlockSizeInFooter < footer.capacity()) || (apkSigBlockSizeInFooter > Integer.MAX_VALUE - 8)) { throw new SignatureNotFoundException( "APK Signing Block size out of range: " + apkSigBlockSizeInFooter); } int totalSize = (int) (apkSigBlockSizeInFooter + 8); long apkSigBlockOffset = centralDirOffset - totalSize; if (apkSigBlockOffset < 0) { throw new SignatureNotFoundException( "APK Signing Block offset out of range: " + apkSigBlockOffset); } ByteBuffer apkSigBlock = ByteBuffer.allocate(totalSize); apkSigBlock.order(ByteOrder.LITTLE_ENDIAN); apk.seek(apkSigBlockOffset); apk.readFully(apkSigBlock.array(), apkSigBlock.arrayOffset(), apkSigBlock.capacity()); long apkSigBlockSizeInHeader = apkSigBlock.getLong(0); if (apkSigBlockSizeInHeader != apkSigBlockSizeInFooter) { throw new SignatureNotFoundException( "APK Signing Block sizes in header and footer do not match: " + apkSigBlockSizeInHeader + " vs " + apkSigBlockSizeInFooter); } return Pair.create(apkSigBlock, apkSigBlockOffset); } static ByteBuffer findApkSignatureSchemeBlock(ByteBuffer apkSigningBlock, int blockId) throws SignatureNotFoundException { checkByteOrderLittleEndian(apkSigningBlock); // FORMAT: // OFFSET DATA TYPE DESCRIPTION // * @+0 bytes uint64: size in bytes (excluding this field) // * @+8 bytes pairs // * @-24 bytes uint64: size in bytes (same as the one above) // * @-16 bytes uint128: magic ByteBuffer pairs = sliceFromTo(apkSigningBlock, 8, apkSigningBlock.capacity() - 24); int entryCount = 0; while (pairs.hasRemaining()) { entryCount++; if (pairs.remaining() < 8) { throw new SignatureNotFoundException( "Insufficient data to read size of APK Signing Block entry #" + entryCount); } long lenLong = pairs.getLong(); if ((lenLong < 4) || (lenLong > Integer.MAX_VALUE)) { throw new SignatureNotFoundException( "APK Signing Block entry #" + entryCount + " size out of range: " + lenLong); } int len = (int) lenLong; int nextEntryPos = pairs.position() + len; if (len > pairs.remaining()) { throw new SignatureNotFoundException( "APK Signing Block entry #" + entryCount + " size out of range: " + len + ", available: " + pairs.remaining()); } int id = pairs.getInt(); if (id == blockId) { return getByteBuffer(pairs, len - 4); } pairs.position(nextEntryPos); } throw new SignatureNotFoundException( "No block with ID " + blockId + " in APK Signing Block."); } private static void checkByteOrderLittleEndian(ByteBuffer buffer) { if (buffer.order() != ByteOrder.LITTLE_ENDIAN) { throw new IllegalArgumentException("ByteBuffer byte order must be little endian"); } }
DataDigester that updates multiple MessageDigests whenever data is fed.
/** * {@link DataDigester} that updates multiple {@link MessageDigest}s whenever data is fed. */
private static class MultipleDigestDataDigester implements DataDigester { private final MessageDigest[] mMds; MultipleDigestDataDigester(MessageDigest[] mds) { mMds = mds; } @Override public void consume(ByteBuffer buffer) { buffer = buffer.slice(); for (MessageDigest md : mMds) { buffer.position(0); md.update(buffer); } } } }