/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.renderscript;

An Element represents one item within an Allocation. An Element is roughly equivalent to a C type in a RenderScript kernel. Elements may be basic or complex. Some basic elements are

  • A single float value (equivalent to a float in a kernel)
  • A four-element float vector (equivalent to a float4 in a kernel)
  • An unsigned 32-bit integer (equivalent to an unsigned int in a kernel)
  • A single signed 8-bit integer (equivalent to a char in a kernel)

A complex element is roughly equivalent to a C struct and contains a number of basic or complex Elements. From Java code, a complex element contains a list of sub-elements and names that represents a particular data structure. Structs used in RS scripts are available to Java code by using the ScriptField_structname class that is reflected from a particular script.

Basic Elements are comprised of a DataType and a DataKind. The DataType encodes C type information of an Element, while the DataKind encodes how that Element should be interpreted by a Sampler. Note that Allocation objects with DataKind DataKind.USER cannot be used as input for a Sampler. In general, Allocation objects that are intended for use with a Sampler should use bitmap-derived Elements such as RGBA_8888 or Element.Element.

Developer Guides

For more information about creating an application that uses RenderScript, read the RenderScript developer guide.

/** * <p>An Element represents one item within an {@link * android.renderscript.Allocation}. An Element is roughly equivalent to a C * type in a RenderScript kernel. Elements may be basic or complex. Some basic * elements are</p> <ul> <li>A single float value (equivalent to a float in a * kernel)</li> <li>A four-element float vector (equivalent to a float4 in a * kernel)</li> <li>An unsigned 32-bit integer (equivalent to an unsigned int in * a kernel)</li> <li>A single signed 8-bit integer (equivalent to a char in a * kernel)</li> </ul> <p>A complex element is roughly equivalent to a C struct * and contains a number of basic or complex Elements. From Java code, a complex * element contains a list of sub-elements and names that represents a * particular data structure. Structs used in RS scripts are available to Java * code by using the {@code ScriptField_structname} class that is reflected from * a particular script.</p> * * <p>Basic Elements are comprised of a {@link * android.renderscript.Element.DataType} and a {@link * android.renderscript.Element.DataKind}. The DataType encodes C type * information of an Element, while the DataKind encodes how that Element should * be interpreted by a {@link android.renderscript.Sampler}. Note that {@link * android.renderscript.Allocation} objects with DataKind {@link * android.renderscript.Element.DataKind#USER} cannot be used as input for a * {@link android.renderscript.Sampler}. In general, {@link * android.renderscript.Allocation} objects that are intended for use with a * {@link android.renderscript.Sampler} should use bitmap-derived Elements such * as {@link android.renderscript.Element#RGBA_8888} or {@link * android.renderscript#Element.A_8}.</p> * * <div class="special reference"> * <h3>Developer Guides</h3> * <p>For more information about creating an application that uses RenderScript, read the * <a href="{@docRoot}guide/topics/renderscript/index.html">RenderScript</a> developer guide.</p> * </div> **/
public class Element extends BaseObj { int mSize; Element[] mElements; String[] mElementNames; int[] mArraySizes; int[] mOffsetInBytes; int[] mVisibleElementMap; DataType mType; DataKind mKind; boolean mNormalized; int mVectorSize; private void updateVisibleSubElements() { if (mElements == null) { return; } int noPaddingFieldCount = 0; int fieldCount = mElementNames.length; // Find out how many elements are not padding for (int ct = 0; ct < fieldCount; ct ++) { if (mElementNames[ct].charAt(0) != '#') { noPaddingFieldCount ++; } } mVisibleElementMap = new int[noPaddingFieldCount]; // Make a map that points us at non-padding elements for (int ct = 0, ctNoPadding = 0; ct < fieldCount; ct ++) { if (mElementNames[ct].charAt(0) != '#') { mVisibleElementMap[ctNoPadding ++] = ct; } } }
Returns:element size in bytes
/** * @return element size in bytes */
public int getBytesSize() {return mSize;}
Returns the number of vector components. 2 for float2, 4 for float4, etc.
Returns:element vector size
/** * Returns the number of vector components. 2 for float2, 4 for * float4, etc. * @return element vector size */
public int getVectorSize() {return mVectorSize;}
DataType represents the basic type information for a basic element. The naming convention follows. For numeric types it is FLOAT, SIGNED, or UNSIGNED followed by the _BITS where BITS is the size of the data. BOOLEAN is a true / false (1,0) represented in an 8 bit container. The UNSIGNED variants with multiple bit definitions are for packed graphical data formats and represent vectors with per vector member sizes which are treated as a single unit for packing and alignment purposes. MATRIX the three matrix types contain FLOAT_32 elements and are treated as 32 bits for alignment purposes. RS_* objects: opaque handles with implementation dependent sizes.
/** * DataType represents the basic type information for a basic element. The * naming convention follows. For numeric types it is FLOAT, * SIGNED, or UNSIGNED followed by the _BITS where BITS is the * size of the data. BOOLEAN is a true / false (1,0) * represented in an 8 bit container. The UNSIGNED variants * with multiple bit definitions are for packed graphical data * formats and represent vectors with per vector member sizes * which are treated as a single unit for packing and alignment * purposes. * * MATRIX the three matrix types contain FLOAT_32 elements and are treated * as 32 bits for alignment purposes. * * RS_* objects: opaque handles with implementation dependent * sizes. */
public enum DataType { NONE (0, 0), FLOAT_16 (1, 2), FLOAT_32 (2, 4), FLOAT_64 (3, 8), SIGNED_8 (4, 1), SIGNED_16 (5, 2), SIGNED_32 (6, 4), SIGNED_64 (7, 8), UNSIGNED_8 (8, 1), UNSIGNED_16 (9, 2), UNSIGNED_32 (10, 4), UNSIGNED_64 (11, 8), BOOLEAN(12, 1), UNSIGNED_5_6_5 (13, 2), UNSIGNED_5_5_5_1 (14, 2), UNSIGNED_4_4_4_4 (15, 2), MATRIX_4X4 (16, 64), MATRIX_3X3 (17, 36), MATRIX_2X2 (18, 16), RS_ELEMENT (1000), RS_TYPE (1001), RS_ALLOCATION (1002), RS_SAMPLER (1003), RS_SCRIPT (1004), RS_MESH (1005), RS_PROGRAM_FRAGMENT (1006), RS_PROGRAM_VERTEX (1007), RS_PROGRAM_RASTER (1008), RS_PROGRAM_STORE (1009), RS_FONT (1010); int mID; int mSize; DataType(int id, int size) { mID = id; mSize = size; } DataType(int id) { mID = id; mSize = 4; if (RenderScript.sPointerSize == 8) { mSize = 32; } } }
The special interpretation of the data if required. This is primarly useful for graphical data. USER indicates no special interpretation is expected. PIXEL is used in conjunction with the standard data types for representing texture formats.
/** * The special interpretation of the data if required. This is primarly * useful for graphical data. USER indicates no special interpretation is * expected. PIXEL is used in conjunction with the standard data types for * representing texture formats. */
public enum DataKind { USER (0), PIXEL_L (7), PIXEL_A (8), PIXEL_LA (9), PIXEL_RGB (10), PIXEL_RGBA (11), PIXEL_DEPTH (12), PIXEL_YUV(13); int mID; DataKind(int id) { mID = id; } }
Return if a element is too complex for use as a data source for a Mesh or a Program.
Returns:boolean
/** * Return if a element is too complex for use as a data source for a Mesh or * a Program. * * @return boolean */
public boolean isComplex() { if (mElements == null) { return false; } for (int ct=0; ct < mElements.length; ct++) { if (mElements[ct].mElements != null) { return true; } } return false; }
Elements could be simple, such as an int or a float, or a structure with multiple sub elements, such as a collection of floats, float2, float4. This function returns zero for simple elements or the number of sub-elements otherwise.
Returns:number of sub-elements in this element
/** * Elements could be simple, such as an int or a float, or a * structure with multiple sub elements, such as a collection of * floats, float2, float4. This function returns zero for simple * elements or the number of sub-elements otherwise. * @return number of sub-elements in this element */
public int getSubElementCount() { if (mVisibleElementMap == null) { return 0; } return mVisibleElementMap.length; }
For complex elements, this function will return the sub-element at index
Params:
  • index – index of the sub-element to return
Returns:sub-element in this element at given index
/** * For complex elements, this function will return the * sub-element at index * @param index index of the sub-element to return * @return sub-element in this element at given index */
public Element getSubElement(int index) { if (mVisibleElementMap == null) { throw new RSIllegalArgumentException("Element contains no sub-elements"); } if (index < 0 || index >= mVisibleElementMap.length) { throw new RSIllegalArgumentException("Illegal sub-element index"); } return mElements[mVisibleElementMap[index]]; }
For complex elements, this function will return the sub-element name at index
Params:
  • index – index of the sub-element
Returns:sub-element in this element at given index
/** * For complex elements, this function will return the * sub-element name at index * @param index index of the sub-element * @return sub-element in this element at given index */
public String getSubElementName(int index) { if (mVisibleElementMap == null) { throw new RSIllegalArgumentException("Element contains no sub-elements"); } if (index < 0 || index >= mVisibleElementMap.length) { throw new RSIllegalArgumentException("Illegal sub-element index"); } return mElementNames[mVisibleElementMap[index]]; }
For complex elements, some sub-elements could be statically sized arrays. This function will return the array size for sub-element at index
Params:
  • index – index of the sub-element
Returns:array size of sub-element in this element at given index
/** * For complex elements, some sub-elements could be statically * sized arrays. This function will return the array size for * sub-element at index * @param index index of the sub-element * @return array size of sub-element in this element at given index */
public int getSubElementArraySize(int index) { if (mVisibleElementMap == null) { throw new RSIllegalArgumentException("Element contains no sub-elements"); } if (index < 0 || index >= mVisibleElementMap.length) { throw new RSIllegalArgumentException("Illegal sub-element index"); } return mArraySizes[mVisibleElementMap[index]]; }
This function specifies the location of a sub-element within the element
Params:
  • index – index of the sub-element
Returns:offset in bytes of sub-element in this element at given index
/** * This function specifies the location of a sub-element within * the element * @param index index of the sub-element * @return offset in bytes of sub-element in this element at given index */
public int getSubElementOffsetBytes(int index) { if (mVisibleElementMap == null) { throw new RSIllegalArgumentException("Element contains no sub-elements"); } if (index < 0 || index >= mVisibleElementMap.length) { throw new RSIllegalArgumentException("Illegal sub-element index"); } return mOffsetInBytes[mVisibleElementMap[index]]; }
Returns:element data type
/** * @return element data type */
public DataType getDataType() { return mType; }
Returns:element data kind
/** * @return element data kind */
public DataKind getDataKind() { return mKind; }
Utility function for returning an Element containing a single Boolean.
Params:
  • rs – Context to which the element will belong.
Returns:Element
/** * Utility function for returning an Element containing a single Boolean. * * @param rs Context to which the element will belong. * * @return Element */
public static Element BOOLEAN(RenderScript rs) { if (rs.mElement_BOOLEAN == null) { synchronized (rs) { if (rs.mElement_BOOLEAN == null) { rs.mElement_BOOLEAN = createUser(rs, DataType.BOOLEAN); } } } return rs.mElement_BOOLEAN; }
Utility function for returning an Element containing a single UNSIGNED_8.
Params:
  • rs – Context to which the element will belong.
Returns:Element
/** * Utility function for returning an Element containing a single UNSIGNED_8. * * @param rs Context to which the element will belong. * * @return Element */
public static Element U8(RenderScript rs) { if (rs.mElement_U8 == null) { synchronized (rs) { if (rs.mElement_U8 == null) { rs.mElement_U8 = createUser(rs, DataType.UNSIGNED_8); } } } return rs.mElement_U8; }
Utility function for returning an Element containing a single SIGNED_8.
Params:
  • rs – Context to which the element will belong.
Returns:Element
/** * Utility function for returning an Element containing a single SIGNED_8. * * @param rs Context to which the element will belong. * * @return Element */
public static Element I8(RenderScript rs) { if (rs.mElement_I8 == null) { synchronized (rs) { if (rs.mElement_I8 == null) { rs.mElement_I8 = createUser(rs, DataType.SIGNED_8); } } } return rs.mElement_I8; } public static Element U16(RenderScript rs) { if (rs.mElement_U16 == null) { synchronized (rs) { if (rs.mElement_U16 == null) { rs.mElement_U16 = createUser(rs, DataType.UNSIGNED_16); } } } return rs.mElement_U16; } public static Element I16(RenderScript rs) { if (rs.mElement_I16 == null) { synchronized (rs) { if (rs.mElement_I16 == null) { rs.mElement_I16 = createUser(rs, DataType.SIGNED_16); } } } return rs.mElement_I16; } public static Element U32(RenderScript rs) { if (rs.mElement_U32 == null) { synchronized (rs) { if (rs.mElement_U32 == null) { rs.mElement_U32 = createUser(rs, DataType.UNSIGNED_32); } } } return rs.mElement_U32; } public static Element I32(RenderScript rs) { if (rs.mElement_I32 == null) { synchronized (rs) { if (rs.mElement_I32 == null) { rs.mElement_I32 = createUser(rs, DataType.SIGNED_32); } } } return rs.mElement_I32; } public static Element U64(RenderScript rs) { if (rs.mElement_U64 == null) { synchronized (rs) { if (rs.mElement_U64 == null) { rs.mElement_U64 = createUser(rs, DataType.UNSIGNED_64); } } } return rs.mElement_U64; } public static Element I64(RenderScript rs) { if (rs.mElement_I64 == null) { synchronized (rs) { if (rs.mElement_I64 == null) { rs.mElement_I64 = createUser(rs, DataType.SIGNED_64); } } } return rs.mElement_I64; } public static Element F16(RenderScript rs) { if (rs.mElement_F16 == null) { synchronized (rs) { if (rs.mElement_F16 == null) { rs.mElement_F16 = createUser(rs, DataType.FLOAT_16); } } } return rs.mElement_F16; } public static Element F32(RenderScript rs) { if (rs.mElement_F32 == null) { synchronized (rs) { if (rs.mElement_F32 == null) { rs.mElement_F32 = createUser(rs, DataType.FLOAT_32); } } } return rs.mElement_F32; } public static Element F64(RenderScript rs) { if (rs.mElement_F64 == null) { synchronized (rs) { if (rs.mElement_F64 == null) { rs.mElement_F64 = createUser(rs, DataType.FLOAT_64); } } } return rs.mElement_F64; } public static Element ELEMENT(RenderScript rs) { if (rs.mElement_ELEMENT == null) { synchronized (rs) { if (rs.mElement_ELEMENT == null) { rs.mElement_ELEMENT = createUser(rs, DataType.RS_ELEMENT); } } } return rs.mElement_ELEMENT; } public static Element TYPE(RenderScript rs) { if (rs.mElement_TYPE == null) { synchronized (rs) { if (rs.mElement_TYPE == null) { rs.mElement_TYPE = createUser(rs, DataType.RS_TYPE); } } } return rs.mElement_TYPE; } public static Element ALLOCATION(RenderScript rs) { if (rs.mElement_ALLOCATION == null) { synchronized (rs) { if (rs.mElement_ALLOCATION == null) { rs.mElement_ALLOCATION = createUser(rs, DataType.RS_ALLOCATION); } } } return rs.mElement_ALLOCATION; } public static Element SAMPLER(RenderScript rs) { if (rs.mElement_SAMPLER == null) { synchronized (rs) { if (rs.mElement_SAMPLER == null) { rs.mElement_SAMPLER = createUser(rs, DataType.RS_SAMPLER); } } } return rs.mElement_SAMPLER; } public static Element SCRIPT(RenderScript rs) { if (rs.mElement_SCRIPT == null) { synchronized (rs) { if (rs.mElement_SCRIPT == null) { rs.mElement_SCRIPT = createUser(rs, DataType.RS_SCRIPT); } } } return rs.mElement_SCRIPT; } public static Element MESH(RenderScript rs) { if (rs.mElement_MESH == null) { synchronized (rs) { if (rs.mElement_MESH == null) { rs.mElement_MESH = createUser(rs, DataType.RS_MESH); } } } return rs.mElement_MESH; } public static Element PROGRAM_FRAGMENT(RenderScript rs) { if (rs.mElement_PROGRAM_FRAGMENT == null) { synchronized (rs) { if (rs.mElement_PROGRAM_FRAGMENT == null) { rs.mElement_PROGRAM_FRAGMENT = createUser(rs, DataType.RS_PROGRAM_FRAGMENT); } } } return rs.mElement_PROGRAM_FRAGMENT; } public static Element PROGRAM_VERTEX(RenderScript rs) { if (rs.mElement_PROGRAM_VERTEX == null) { synchronized (rs) { if (rs.mElement_PROGRAM_VERTEX == null) { rs.mElement_PROGRAM_VERTEX = createUser(rs, DataType.RS_PROGRAM_VERTEX); } } } return rs.mElement_PROGRAM_VERTEX; } public static Element PROGRAM_RASTER(RenderScript rs) { if (rs.mElement_PROGRAM_RASTER == null) { synchronized (rs) { if (rs.mElement_PROGRAM_RASTER == null) { rs.mElement_PROGRAM_RASTER = createUser(rs, DataType.RS_PROGRAM_RASTER); } } } return rs.mElement_PROGRAM_RASTER; } public static Element PROGRAM_STORE(RenderScript rs) { if (rs.mElement_PROGRAM_STORE == null) { synchronized (rs) { if (rs.mElement_PROGRAM_STORE == null) { rs.mElement_PROGRAM_STORE = createUser(rs, DataType.RS_PROGRAM_STORE); } } } return rs.mElement_PROGRAM_STORE; } public static Element FONT(RenderScript rs) { if (rs.mElement_FONT == null) { synchronized (rs) { if (rs.mElement_FONT == null) { rs.mElement_FONT = createUser(rs, DataType.RS_FONT); } } } return rs.mElement_FONT; } public static Element A_8(RenderScript rs) { if (rs.mElement_A_8 == null) { synchronized (rs) { if (rs.mElement_A_8 == null) { rs.mElement_A_8 = createPixel(rs, DataType.UNSIGNED_8, DataKind.PIXEL_A); } } } return rs.mElement_A_8; } public static Element RGB_565(RenderScript rs) { if (rs.mElement_RGB_565 == null) { synchronized (rs) { if (rs.mElement_RGB_565 == null) { rs.mElement_RGB_565 = createPixel(rs, DataType.UNSIGNED_5_6_5, DataKind.PIXEL_RGB); } } } return rs.mElement_RGB_565; } public static Element RGB_888(RenderScript rs) { if (rs.mElement_RGB_888 == null) { synchronized (rs) { if (rs.mElement_RGB_888 == null) { rs.mElement_RGB_888 = createPixel(rs, DataType.UNSIGNED_8, DataKind.PIXEL_RGB); } } } return rs.mElement_RGB_888; } public static Element RGBA_5551(RenderScript rs) { if (rs.mElement_RGBA_5551 == null) { synchronized (rs) { if (rs.mElement_RGBA_5551 == null) { rs.mElement_RGBA_5551 = createPixel(rs, DataType.UNSIGNED_5_5_5_1, DataKind.PIXEL_RGBA); } } } return rs.mElement_RGBA_5551; } public static Element RGBA_4444(RenderScript rs) { if (rs.mElement_RGBA_4444 == null) { synchronized (rs) { if (rs.mElement_RGBA_4444 == null) { rs.mElement_RGBA_4444 = createPixel(rs, DataType.UNSIGNED_4_4_4_4, DataKind.PIXEL_RGBA); } } } return rs.mElement_RGBA_4444; } public static Element RGBA_8888(RenderScript rs) { if (rs.mElement_RGBA_8888 == null) { synchronized (rs) { if (rs.mElement_RGBA_8888 == null) { rs.mElement_RGBA_8888 = createPixel(rs, DataType.UNSIGNED_8, DataKind.PIXEL_RGBA); } } } return rs.mElement_RGBA_8888; } public static Element F16_2(RenderScript rs) { if (rs.mElement_HALF_2 == null) { synchronized (rs) { if (rs.mElement_HALF_2 == null) { rs.mElement_HALF_2 = createVector(rs, DataType.FLOAT_16, 2); } } } return rs.mElement_HALF_2; } public static Element F16_3(RenderScript rs) { if (rs.mElement_HALF_3 == null) { synchronized (rs) { if (rs.mElement_HALF_3 == null) { rs.mElement_HALF_3 = createVector(rs, DataType.FLOAT_16, 3); } } } return rs.mElement_HALF_3; } public static Element F16_4(RenderScript rs) { if (rs.mElement_HALF_4 == null) { synchronized (rs) { if (rs.mElement_HALF_4 == null) { rs.mElement_HALF_4 = createVector(rs, DataType.FLOAT_16, 4); } } } return rs.mElement_HALF_4; } public static Element F32_2(RenderScript rs) { if (rs.mElement_FLOAT_2 == null) { synchronized (rs) { if (rs.mElement_FLOAT_2 == null) { rs.mElement_FLOAT_2 = createVector(rs, DataType.FLOAT_32, 2); } } } return rs.mElement_FLOAT_2; } public static Element F32_3(RenderScript rs) { if (rs.mElement_FLOAT_3 == null) { synchronized (rs) { if (rs.mElement_FLOAT_3 == null) { rs.mElement_FLOAT_3 = createVector(rs, DataType.FLOAT_32, 3); } } } return rs.mElement_FLOAT_3; } public static Element F32_4(RenderScript rs) { if (rs.mElement_FLOAT_4 == null) { synchronized (rs) { if (rs.mElement_FLOAT_4 == null) { rs.mElement_FLOAT_4 = createVector(rs, DataType.FLOAT_32, 4); } } } return rs.mElement_FLOAT_4; } public static Element F64_2(RenderScript rs) { if (rs.mElement_DOUBLE_2 == null) { synchronized (rs) { if (rs.mElement_DOUBLE_2 == null) { rs.mElement_DOUBLE_2 = createVector(rs, DataType.FLOAT_64, 2); } } } return rs.mElement_DOUBLE_2; } public static Element F64_3(RenderScript rs) { if (rs.mElement_DOUBLE_3 == null) { synchronized (rs) { if (rs.mElement_DOUBLE_3 == null) { rs.mElement_DOUBLE_3 = createVector(rs, DataType.FLOAT_64, 3); } } } return rs.mElement_DOUBLE_3; } public static Element F64_4(RenderScript rs) { if (rs.mElement_DOUBLE_4 == null) { synchronized (rs) { if (rs.mElement_DOUBLE_4 == null) { rs.mElement_DOUBLE_4 = createVector(rs, DataType.FLOAT_64, 4); } } } return rs.mElement_DOUBLE_4; } public static Element U8_2(RenderScript rs) { if (rs.mElement_UCHAR_2 == null) { synchronized (rs) { if (rs.mElement_UCHAR_2 == null) { rs.mElement_UCHAR_2 = createVector(rs, DataType.UNSIGNED_8, 2); } } } return rs.mElement_UCHAR_2; } public static Element U8_3(RenderScript rs) { if (rs.mElement_UCHAR_3 == null) { synchronized (rs) { if (rs.mElement_UCHAR_3 == null) { rs.mElement_UCHAR_3 = createVector(rs, DataType.UNSIGNED_8, 3); } } } return rs.mElement_UCHAR_3; } public static Element U8_4(RenderScript rs) { if (rs.mElement_UCHAR_4 == null) { synchronized (rs) { if (rs.mElement_UCHAR_4 == null) { rs.mElement_UCHAR_4 = createVector(rs, DataType.UNSIGNED_8, 4); } } } return rs.mElement_UCHAR_4; } public static Element I8_2(RenderScript rs) { if (rs.mElement_CHAR_2 == null) { synchronized (rs) { if (rs.mElement_CHAR_2 == null) { rs.mElement_CHAR_2 = createVector(rs, DataType.SIGNED_8, 2); } } } return rs.mElement_CHAR_2; } public static Element I8_3(RenderScript rs) { if (rs.mElement_CHAR_3 == null) { synchronized (rs) { if (rs.mElement_CHAR_3 == null) { rs.mElement_CHAR_3 = createVector(rs, DataType.SIGNED_8, 3); } } } return rs.mElement_CHAR_3; } public static Element I8_4(RenderScript rs) { if (rs.mElement_CHAR_4 == null) { synchronized (rs) { if (rs.mElement_CHAR_4 == null) { rs.mElement_CHAR_4 = createVector(rs, DataType.SIGNED_8, 4); } } } return rs.mElement_CHAR_4; } public static Element U16_2(RenderScript rs) { if (rs.mElement_USHORT_2 == null) { synchronized (rs) { if (rs.mElement_USHORT_2 == null) { rs.mElement_USHORT_2 = createVector(rs, DataType.UNSIGNED_16, 2); } } } return rs.mElement_USHORT_2; } public static Element U16_3(RenderScript rs) { if (rs.mElement_USHORT_3 == null) { synchronized (rs) { if (rs.mElement_USHORT_3 == null) { rs.mElement_USHORT_3 = createVector(rs, DataType.UNSIGNED_16, 3); } } } return rs.mElement_USHORT_3; } public static Element U16_4(RenderScript rs) { if (rs.mElement_USHORT_4 == null) { synchronized (rs) { if (rs.mElement_USHORT_4 == null) { rs.mElement_USHORT_4 = createVector(rs, DataType.UNSIGNED_16, 4); } } } return rs.mElement_USHORT_4; } public static Element I16_2(RenderScript rs) { if (rs.mElement_SHORT_2 == null) { synchronized (rs) { if (rs.mElement_SHORT_2 == null) { rs.mElement_SHORT_2 = createVector(rs, DataType.SIGNED_16, 2); } } } return rs.mElement_SHORT_2; } public static Element I16_3(RenderScript rs) { if (rs.mElement_SHORT_3 == null) { synchronized (rs) { if (rs.mElement_SHORT_3 == null) { rs.mElement_SHORT_3 = createVector(rs, DataType.SIGNED_16, 3); } } } return rs.mElement_SHORT_3; } public static Element I16_4(RenderScript rs) { if (rs.mElement_SHORT_4 == null) { synchronized (rs) { if (rs.mElement_SHORT_4 == null) { rs.mElement_SHORT_4 = createVector(rs, DataType.SIGNED_16, 4); } } } return rs.mElement_SHORT_4; } public static Element U32_2(RenderScript rs) { if (rs.mElement_UINT_2 == null) { synchronized (rs) { if (rs.mElement_UINT_2 == null) { rs.mElement_UINT_2 = createVector(rs, DataType.UNSIGNED_32, 2); } } } return rs.mElement_UINT_2; } public static Element U32_3(RenderScript rs) { if (rs.mElement_UINT_3 == null) { synchronized (rs) { if (rs.mElement_UINT_3 == null) { rs.mElement_UINT_3 = createVector(rs, DataType.UNSIGNED_32, 3); } } } return rs.mElement_UINT_3; } public static Element U32_4(RenderScript rs) { if (rs.mElement_UINT_4 == null) { synchronized (rs) { if (rs.mElement_UINT_4 == null) { rs.mElement_UINT_4 = createVector(rs, DataType.UNSIGNED_32, 4); } } } return rs.mElement_UINT_4; } public static Element I32_2(RenderScript rs) { if (rs.mElement_INT_2 == null) { synchronized (rs) { if (rs.mElement_INT_2 == null) { rs.mElement_INT_2 = createVector(rs, DataType.SIGNED_32, 2); } } } return rs.mElement_INT_2; } public static Element I32_3(RenderScript rs) { if (rs.mElement_INT_3 == null) { synchronized (rs) { if (rs.mElement_INT_3 == null) { rs.mElement_INT_3 = createVector(rs, DataType.SIGNED_32, 3); } } } return rs.mElement_INT_3; } public static Element I32_4(RenderScript rs) { if (rs.mElement_INT_4 == null) { synchronized (rs) { if (rs.mElement_INT_4 == null) { rs.mElement_INT_4 = createVector(rs, DataType.SIGNED_32, 4); } } } return rs.mElement_INT_4; } public static Element U64_2(RenderScript rs) { if (rs.mElement_ULONG_2 == null) { synchronized (rs) { if (rs.mElement_ULONG_2 == null) { rs.mElement_ULONG_2 = createVector(rs, DataType.UNSIGNED_64, 2); } } } return rs.mElement_ULONG_2; } public static Element U64_3(RenderScript rs) { if (rs.mElement_ULONG_3 == null) { synchronized (rs) { if (rs.mElement_ULONG_3 == null) { rs.mElement_ULONG_3 = createVector(rs, DataType.UNSIGNED_64, 3); } } } return rs.mElement_ULONG_3; } public static Element U64_4(RenderScript rs) { if (rs.mElement_ULONG_4 == null) { synchronized (rs) { if (rs.mElement_ULONG_4 == null) { rs.mElement_ULONG_4 = createVector(rs, DataType.UNSIGNED_64, 4); } } } return rs.mElement_ULONG_4; } public static Element I64_2(RenderScript rs) { if (rs.mElement_LONG_2 == null) { synchronized (rs) { if (rs.mElement_LONG_2 == null) { rs.mElement_LONG_2 = createVector(rs, DataType.SIGNED_64, 2); } } } return rs.mElement_LONG_2; } public static Element I64_3(RenderScript rs) { if (rs.mElement_LONG_3 == null) { synchronized (rs) { if (rs.mElement_LONG_3 == null) { rs.mElement_LONG_3 = createVector(rs, DataType.SIGNED_64, 3); } } } return rs.mElement_LONG_3; } public static Element I64_4(RenderScript rs) { if (rs.mElement_LONG_4 == null) { synchronized (rs) { if (rs.mElement_LONG_4 == null) { rs.mElement_LONG_4 = createVector(rs, DataType.SIGNED_64, 4); } } } return rs.mElement_LONG_4; } public static Element YUV(RenderScript rs) { if (rs.mElement_YUV == null) { synchronized (rs) { if (rs.mElement_YUV == null) { rs.mElement_YUV = createPixel(rs, DataType.UNSIGNED_8, DataKind.PIXEL_YUV); } } } return rs.mElement_YUV; } public static Element MATRIX_4X4(RenderScript rs) { if (rs.mElement_MATRIX_4X4 == null) { synchronized (rs) { if (rs.mElement_MATRIX_4X4 == null) { rs.mElement_MATRIX_4X4 = createUser(rs, DataType.MATRIX_4X4); } } } return rs.mElement_MATRIX_4X4; }
Deprecated:use MATRIX_4X4
/** @deprecated use MATRIX_4X4 */
public static Element MATRIX4X4(RenderScript rs) { return MATRIX_4X4(rs); } public static Element MATRIX_3X3(RenderScript rs) { if (rs.mElement_MATRIX_3X3 == null) { synchronized (rs) { if (rs.mElement_MATRIX_3X3 == null) { rs.mElement_MATRIX_3X3 = createUser(rs, DataType.MATRIX_3X3); } } } return rs.mElement_MATRIX_3X3; } public static Element MATRIX_2X2(RenderScript rs) { if (rs.mElement_MATRIX_2X2 == null) { synchronized (rs) { if (rs.mElement_MATRIX_2X2 == null) { rs.mElement_MATRIX_2X2 = createUser(rs, DataType.MATRIX_2X2); } } } return rs.mElement_MATRIX_2X2; } Element(long id, RenderScript rs, Element[] e, String[] n, int[] as) { super(id, rs); mSize = 0; mVectorSize = 1; mElements = e; mElementNames = n; mArraySizes = as; mType = DataType.NONE; mKind = DataKind.USER; mOffsetInBytes = new int[mElements.length]; for (int ct = 0; ct < mElements.length; ct++ ) { mOffsetInBytes[ct] = mSize; mSize += mElements[ct].mSize * mArraySizes[ct]; } updateVisibleSubElements(); } Element(long id, RenderScript rs, DataType dt, DataKind dk, boolean norm, int size) { super(id, rs); if ((dt != DataType.UNSIGNED_5_6_5) && (dt != DataType.UNSIGNED_4_4_4_4) && (dt != DataType.UNSIGNED_5_5_5_1)) { if (size == 3) { mSize = dt.mSize * 4; } else { mSize = dt.mSize * size; } } else { mSize = dt.mSize; } mType = dt; mKind = dk; mNormalized = norm; mVectorSize = size; } Element(long id, RenderScript rs) { super(id, rs); } @Override void updateFromNative() { super.updateFromNative(); // we will pack mType; mKind; mNormalized; mVectorSize; NumSubElements int[] dataBuffer = new int[5]; mRS.nElementGetNativeData(getID(mRS), dataBuffer); mNormalized = dataBuffer[2] == 1 ? true : false; mVectorSize = dataBuffer[3]; mSize = 0; for (DataType dt: DataType.values()) { if(dt.mID == dataBuffer[0]){ mType = dt; mSize = mType.mSize * mVectorSize; } } for (DataKind dk: DataKind.values()) { if(dk.mID == dataBuffer[1]){ mKind = dk; } } int numSubElements = dataBuffer[4]; if(numSubElements > 0) { mElements = new Element[numSubElements]; mElementNames = new String[numSubElements]; mArraySizes = new int[numSubElements]; mOffsetInBytes = new int[numSubElements]; long[] subElementIds = new long[numSubElements]; mRS.nElementGetSubElements(getID(mRS), subElementIds, mElementNames, mArraySizes); for(int i = 0; i < numSubElements; i ++) { mElements[i] = new Element(subElementIds[i], mRS); mElements[i].updateFromNative(); mOffsetInBytes[i] = mSize; mSize += mElements[i].mSize * mArraySizes[i]; } } updateVisibleSubElements(); }
Create a custom Element of the specified DataType. The DataKind will be set to USER and the vector size to 1 indicating non-vector.
Params:
  • rs – The context associated with the new Element.
  • dt – The DataType for the new element.
Returns:Element
/** * Create a custom Element of the specified DataType. The DataKind will be * set to USER and the vector size to 1 indicating non-vector. * * @param rs The context associated with the new Element. * @param dt The DataType for the new element. * @return Element */
static Element createUser(RenderScript rs, DataType dt) { DataKind dk = DataKind.USER; boolean norm = false; int vecSize = 1; long id = rs.nElementCreate(dt.mID, dk.mID, norm, vecSize); return new Element(id, rs, dt, dk, norm, vecSize); }
Create a custom vector element of the specified DataType and vector size. DataKind will be set to USER. Only primitive types (FLOAT_32, FLOAT_64, SIGNED_8, SIGNED_16, SIGNED_32, SIGNED_64, UNSIGNED_8, UNSIGNED_16, UNSIGNED_32, UNSIGNED_64, BOOLEAN) are supported.
Params:
  • rs – The context associated with the new Element.
  • dt – The DataType for the new Element.
  • size – Vector size for the new Element. Range 2-4 inclusive supported.
Returns:Element
/** * Create a custom vector element of the specified DataType and vector size. * DataKind will be set to USER. Only primitive types (FLOAT_32, FLOAT_64, * SIGNED_8, SIGNED_16, SIGNED_32, SIGNED_64, UNSIGNED_8, UNSIGNED_16, * UNSIGNED_32, UNSIGNED_64, BOOLEAN) are supported. * * @param rs The context associated with the new Element. * @param dt The DataType for the new Element. * @param size Vector size for the new Element. Range 2-4 inclusive * supported. * * @return Element */
public static Element createVector(RenderScript rs, DataType dt, int size) { if (size < 2 || size > 4) { throw new RSIllegalArgumentException("Vector size out of range 2-4."); } switch (dt) { // Support only primitive integer/float/boolean types as vectors. case FLOAT_16: case FLOAT_32: case FLOAT_64: case SIGNED_8: case SIGNED_16: case SIGNED_32: case SIGNED_64: case UNSIGNED_8: case UNSIGNED_16: case UNSIGNED_32: case UNSIGNED_64: case BOOLEAN: { DataKind dk = DataKind.USER; boolean norm = false; long id = rs.nElementCreate(dt.mID, dk.mID, norm, size); return new Element(id, rs, dt, dk, norm, size); } default: { throw new RSIllegalArgumentException("Cannot create vector of " + "non-primitive type."); } } }
Create a new pixel Element type. A matching DataType and DataKind must be provided. The DataType and DataKind must contain the same number of components. Vector size will be set to 1.
Params:
  • rs – The context associated with the new Element.
  • dt – The DataType for the new element.
  • dk – The DataKind to specify the mapping of each component in the DataType.
Returns:Element
/** * Create a new pixel Element type. A matching DataType and DataKind must * be provided. The DataType and DataKind must contain the same number of * components. Vector size will be set to 1. * * @param rs The context associated with the new Element. * @param dt The DataType for the new element. * @param dk The DataKind to specify the mapping of each component in the * DataType. * * @return Element */
public static Element createPixel(RenderScript rs, DataType dt, DataKind dk) { if (!(dk == DataKind.PIXEL_L || dk == DataKind.PIXEL_A || dk == DataKind.PIXEL_LA || dk == DataKind.PIXEL_RGB || dk == DataKind.PIXEL_RGBA || dk == DataKind.PIXEL_DEPTH || dk == DataKind.PIXEL_YUV)) { throw new RSIllegalArgumentException("Unsupported DataKind"); } if (!(dt == DataType.UNSIGNED_8 || dt == DataType.UNSIGNED_16 || dt == DataType.UNSIGNED_5_6_5 || dt == DataType.UNSIGNED_4_4_4_4 || dt == DataType.UNSIGNED_5_5_5_1)) { throw new RSIllegalArgumentException("Unsupported DataType"); } if (dt == DataType.UNSIGNED_5_6_5 && dk != DataKind.PIXEL_RGB) { throw new RSIllegalArgumentException("Bad kind and type combo"); } if (dt == DataType.UNSIGNED_5_5_5_1 && dk != DataKind.PIXEL_RGBA) { throw new RSIllegalArgumentException("Bad kind and type combo"); } if (dt == DataType.UNSIGNED_4_4_4_4 && dk != DataKind.PIXEL_RGBA) { throw new RSIllegalArgumentException("Bad kind and type combo"); } if (dt == DataType.UNSIGNED_16 && dk != DataKind.PIXEL_DEPTH) { throw new RSIllegalArgumentException("Bad kind and type combo"); } int size = 1; switch (dk) { case PIXEL_LA: size = 2; break; case PIXEL_RGB: size = 3; break; case PIXEL_RGBA: size = 4; break; case PIXEL_DEPTH: size = 2; break; } boolean norm = true; long id = rs.nElementCreate(dt.mID, dk.mID, norm, size); return new Element(id, rs, dt, dk, norm, size); }
Check if the current Element is compatible with another Element. Primitive Elements are compatible if they share the same underlying size and type (i.e. U8 is compatible with A_8). User-defined Elements must be equal in order to be compatible. This requires strict name equivalence for all sub-Elements (in addition to structural equivalence).
Params:
  • e – The Element to check compatibility with.
Returns:boolean true if the Elements are compatible, otherwise false.
/** * Check if the current Element is compatible with another Element. * Primitive Elements are compatible if they share the same underlying * size and type (i.e. U8 is compatible with A_8). User-defined Elements * must be equal in order to be compatible. This requires strict name * equivalence for all sub-Elements (in addition to structural equivalence). * * @param e The Element to check compatibility with. * * @return boolean true if the Elements are compatible, otherwise false. */
public boolean isCompatible(Element e) { // Try strict BaseObj equality to start with. if (this.equals(e)) { return true; } // Ignore mKind because it is allowed to be different (user vs. pixel). // We also ignore mNormalized because it can be different. The mType // field must not be NONE since we require name equivalence for // all user-created Elements. return ((mSize == e.mSize) && (mType != DataType.NONE) && (mType == e.mType) && (mVectorSize == e.mVectorSize)); }
Builder class for producing complex elements with matching field and name pairs. The builder starts empty. The order in which elements are added is retained for the layout in memory.
/** * Builder class for producing complex elements with matching field and name * pairs. The builder starts empty. The order in which elements are added * is retained for the layout in memory. * */
public static class Builder { RenderScript mRS; Element[] mElements; String[] mElementNames; int[] mArraySizes; int mCount; int mSkipPadding;
Create a builder object.
Params:
  • rs –
/** * Create a builder object. * * @param rs */
public Builder(RenderScript rs) { mRS = rs; mCount = 0; mElements = new Element[8]; mElementNames = new String[8]; mArraySizes = new int[8]; }
Add an array of elements to this element.
Params:
  • element –
  • name –
  • arraySize –
/** * Add an array of elements to this element. * * @param element * @param name * @param arraySize */
public Builder add(Element element, String name, int arraySize) { if (arraySize < 1) { throw new RSIllegalArgumentException("Array size cannot be less than 1."); } // Skip padding fields after a vector 3 type. if (mSkipPadding != 0) { if (name.startsWith("#padding_")) { mSkipPadding = 0; return this; } } if (element.mVectorSize == 3) { mSkipPadding = 1; } else { mSkipPadding = 0; } if(mCount == mElements.length) { Element[] e = new Element[mCount + 8]; String[] s = new String[mCount + 8]; int[] as = new int[mCount + 8]; System.arraycopy(mElements, 0, e, 0, mCount); System.arraycopy(mElementNames, 0, s, 0, mCount); System.arraycopy(mArraySizes, 0, as, 0, mCount); mElements = e; mElementNames = s; mArraySizes = as; } mElements[mCount] = element; mElementNames[mCount] = name; mArraySizes[mCount] = arraySize; mCount++; return this; }
Add a single element to this Element.
Params:
  • element –
  • name –
/** * Add a single element to this Element. * * @param element * @param name */
public Builder add(Element element, String name) { return add(element, name, 1); }
Create the element from this builder.
Returns:Element
/** * Create the element from this builder. * * * @return Element */
public Element create() { mRS.validate(); Element[] ein = new Element[mCount]; String[] sin = new String[mCount]; int[] asin = new int[mCount]; java.lang.System.arraycopy(mElements, 0, ein, 0, mCount); java.lang.System.arraycopy(mElementNames, 0, sin, 0, mCount); java.lang.System.arraycopy(mArraySizes, 0, asin, 0, mCount); long[] ids = new long[ein.length]; for (int ct = 0; ct < ein.length; ct++ ) { ids[ct] = ein[ct].getID(mRS); } long id = mRS.nElementCreate2(ids, sin, asin); return new Element(id, mRS, ein, sin, asin); } } }