/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License
 */

package android.location;

import android.annotation.SystemApi;
import android.os.Parcel;
import android.os.Parcelable;

A class containing a GPS clock timestamp. It represents a measurement of the GPS receiver's clock.
@hide
/** * A class containing a GPS clock timestamp. * It represents a measurement of the GPS receiver's clock. * * @hide */
@SystemApi public class GpsClock implements Parcelable { // The following enumerations must be in sync with the values declared in gps.h
The type of the time stored is not available or it is unknown.
/** * The type of the time stored is not available or it is unknown. */
public static final byte TYPE_UNKNOWN = 0;
The source of the time value reported by this class is the 'Local Hardware Clock'.
/** * The source of the time value reported by this class is the 'Local Hardware Clock'. */
public static final byte TYPE_LOCAL_HW_TIME = 1;
The source of the time value reported by this class is the 'GPS time' derived from satellites (epoch = Jan 6, 1980).
/** * The source of the time value reported by this class is the 'GPS time' derived from * satellites (epoch = Jan 6, 1980). */
public static final byte TYPE_GPS_TIME = 2; private static final short HAS_NO_FLAGS = 0; private static final short HAS_LEAP_SECOND = (1<<0); private static final short HAS_TIME_UNCERTAINTY = (1<<1); private static final short HAS_FULL_BIAS = (1<<2); private static final short HAS_BIAS = (1<<3); private static final short HAS_BIAS_UNCERTAINTY = (1<<4); private static final short HAS_DRIFT = (1<<5); private static final short HAS_DRIFT_UNCERTAINTY = (1<<6); // End enumerations in sync with gps.h private short mFlags; private short mLeapSecond; private byte mType; private long mTimeInNs; private double mTimeUncertaintyInNs; private long mFullBiasInNs; private double mBiasInNs; private double mBiasUncertaintyInNs; private double mDriftInNsPerSec; private double mDriftUncertaintyInNsPerSec; GpsClock() { initialize(); }
Sets all contents to the values stored in the provided object.
/** * Sets all contents to the values stored in the provided object. */
public void set(GpsClock clock) { mFlags = clock.mFlags; mLeapSecond = clock.mLeapSecond; mType = clock.mType; mTimeInNs = clock.mTimeInNs; mTimeUncertaintyInNs = clock.mTimeUncertaintyInNs; mFullBiasInNs = clock.mFullBiasInNs; mBiasInNs = clock.mBiasInNs; mBiasUncertaintyInNs = clock.mBiasUncertaintyInNs; mDriftInNsPerSec = clock.mDriftInNsPerSec; mDriftUncertaintyInNsPerSec = clock.mDriftUncertaintyInNsPerSec; }
Resets all the contents to its original state.
/** * Resets all the contents to its original state. */
public void reset() { initialize(); }
Gets the type of time reported by getTimeInNs().
/** * Gets the type of time reported by {@link #getTimeInNs()}. */
public byte getType() { return mType; }
Sets the type of time reported.
/** * Sets the type of time reported. */
public void setType(byte value) { mType = value; }
Gets a string representation of the 'type'. For internal and logging use only.
/** * Gets a string representation of the 'type'. * For internal and logging use only. */
private String getTypeString() { switch (mType) { case TYPE_UNKNOWN: return "Unknown"; case TYPE_GPS_TIME: return "GpsTime"; case TYPE_LOCAL_HW_TIME: return "LocalHwClock"; default: return "<Invalid:" + mType + ">"; } }
Returns true if getLeapSecond() is available, false otherwise.
/** * Returns true if {@link #getLeapSecond()} is available, false otherwise. */
public boolean hasLeapSecond() { return isFlagSet(HAS_LEAP_SECOND); }
Gets the leap second associated with the clock's time. The sign of the value is defined by the following equation: utc_time_ns = time_ns + (full_bias_ns + bias_ns) - leap_second * 1,000,000,000 The value is only available if hasLeapSecond() is true.
/** * Gets the leap second associated with the clock's time. * The sign of the value is defined by the following equation: * utc_time_ns = time_ns + (full_bias_ns + bias_ns) - leap_second * 1,000,000,000 * * The value is only available if {@link #hasLeapSecond()} is true. */
public short getLeapSecond() { return mLeapSecond; }
Sets the leap second associated with the clock's time.
/** * Sets the leap second associated with the clock's time. */
public void setLeapSecond(short leapSecond) { setFlag(HAS_LEAP_SECOND); mLeapSecond = leapSecond; }
Resets the leap second associated with the clock's time.
/** * Resets the leap second associated with the clock's time. */
public void resetLeapSecond() { resetFlag(HAS_LEAP_SECOND); mLeapSecond = Short.MIN_VALUE; }
Gets the GPS receiver internal clock value in nanoseconds. This can be either the 'local hardware clock' value (TYPE_LOCAL_HW_TIME), or the current GPS time derived inside GPS receiver (TYPE_GPS_TIME). getType() defines the time reported. For 'local hardware clock' this value is expected to be monotonically increasing during the reporting session. The real GPS time can be derived by compensating getFullBiasInNs() (when it is available) from this value. For 'GPS time' this value is expected to be the best estimation of current GPS time that GPS receiver can achieve. getTimeUncertaintyInNs() should be available when GPS time is specified. Sub-nanosecond accuracy can be provided by means of getBiasInNs(). The reported time includes getTimeUncertaintyInNs().
/** * Gets the GPS receiver internal clock value in nanoseconds. * This can be either the 'local hardware clock' value ({@link #TYPE_LOCAL_HW_TIME}), or the * current GPS time derived inside GPS receiver ({@link #TYPE_GPS_TIME}). * {@link #getType()} defines the time reported. * * For 'local hardware clock' this value is expected to be monotonically increasing during the * reporting session. The real GPS time can be derived by compensating * {@link #getFullBiasInNs()} (when it is available) from this value. * * For 'GPS time' this value is expected to be the best estimation of current GPS time that GPS * receiver can achieve. {@link #getTimeUncertaintyInNs()} should be available when GPS time is * specified. * * Sub-nanosecond accuracy can be provided by means of {@link #getBiasInNs()}. * The reported time includes {@link #getTimeUncertaintyInNs()}. */
public long getTimeInNs() { return mTimeInNs; }
Sets the GPS receiver internal clock in nanoseconds.
/** * Sets the GPS receiver internal clock in nanoseconds. */
public void setTimeInNs(long timeInNs) { mTimeInNs = timeInNs; }
Returns true if getTimeUncertaintyInNs() is available, false otherwise.
/** * Returns true if {@link #getTimeUncertaintyInNs()} is available, false otherwise. */
public boolean hasTimeUncertaintyInNs() { return isFlagSet(HAS_TIME_UNCERTAINTY); }
Gets the clock's time Uncertainty (1-Sigma) in nanoseconds. The uncertainty is represented as an absolute (single sided) value. The value is only available if hasTimeUncertaintyInNs() is true.
/** * Gets the clock's time Uncertainty (1-Sigma) in nanoseconds. * The uncertainty is represented as an absolute (single sided) value. * * The value is only available if {@link #hasTimeUncertaintyInNs()} is true. */
public double getTimeUncertaintyInNs() { return mTimeUncertaintyInNs; }
Sets the clock's Time Uncertainty (1-Sigma) in nanoseconds.
/** * Sets the clock's Time Uncertainty (1-Sigma) in nanoseconds. */
public void setTimeUncertaintyInNs(double timeUncertaintyInNs) { setFlag(HAS_TIME_UNCERTAINTY); mTimeUncertaintyInNs = timeUncertaintyInNs; }
Resets the clock's Time Uncertainty (1-Sigma) in nanoseconds.
/** * Resets the clock's Time Uncertainty (1-Sigma) in nanoseconds. */
public void resetTimeUncertaintyInNs() { resetFlag(HAS_TIME_UNCERTAINTY); mTimeUncertaintyInNs = Double.NaN; }
Returns true if @getFullBiasInNs() is available, false otherwise.
/** * Returns true if {@link @getFullBiasInNs()} is available, false otherwise. */
public boolean hasFullBiasInNs() { return isFlagSet(HAS_FULL_BIAS); }
Gets the difference between hardware clock (getTimeInNs()) inside GPS receiver and the true GPS time since 0000Z, January 6, 1980, in nanoseconds. This value is available if TYPE_LOCAL_HW_TIME is set, and GPS receiver has solved the clock for GPS time. getBiasUncertaintyInNs() should be used for quality check. The sign of the value is defined by the following equation: true time (GPS time) = time_ns + (full_bias_ns + bias_ns) The reported full bias includes getBiasUncertaintyInNs(). The value is onl available if hasFullBiasInNs() is true.
/** * Gets the difference between hardware clock ({@link #getTimeInNs()}) inside GPS receiver and * the true GPS time since 0000Z, January 6, 1980, in nanoseconds. * * This value is available if {@link #TYPE_LOCAL_HW_TIME} is set, and GPS receiver has solved * the clock for GPS time. * {@link #getBiasUncertaintyInNs()} should be used for quality check. * * The sign of the value is defined by the following equation: * true time (GPS time) = time_ns + (full_bias_ns + bias_ns) * * The reported full bias includes {@link #getBiasUncertaintyInNs()}. * The value is onl available if {@link #hasFullBiasInNs()} is true. */
public long getFullBiasInNs() { return mFullBiasInNs; }
Sets the full bias in nanoseconds.
/** * Sets the full bias in nanoseconds. */
public void setFullBiasInNs(long value) { setFlag(HAS_FULL_BIAS); mFullBiasInNs = value; }
Resets the full bias in nanoseconds.
/** * Resets the full bias in nanoseconds. */
public void resetFullBiasInNs() { resetFlag(HAS_FULL_BIAS); mFullBiasInNs = Long.MIN_VALUE; }
Returns true if getBiasInNs() is available, false otherwise.
/** * Returns true if {@link #getBiasInNs()} is available, false otherwise. */
public boolean hasBiasInNs() { return isFlagSet(HAS_BIAS); }
Gets the clock's sub-nanosecond bias. The reported bias includes getBiasUncertaintyInNs(). The value is only available if hasBiasInNs() is true.
/** * Gets the clock's sub-nanosecond bias. * The reported bias includes {@link #getBiasUncertaintyInNs()}. * * The value is only available if {@link #hasBiasInNs()} is true. */
public double getBiasInNs() { return mBiasInNs; }
Sets the sub-nanosecond bias.
/** * Sets the sub-nanosecond bias. */
public void setBiasInNs(double biasInNs) { setFlag(HAS_BIAS); mBiasInNs = biasInNs; }
Resets the clock's Bias in nanoseconds.
/** * Resets the clock's Bias in nanoseconds. */
public void resetBiasInNs() { resetFlag(HAS_BIAS); mBiasInNs = Double.NaN; }
Returns true if getBiasUncertaintyInNs() is available, false otherwise.
/** * Returns true if {@link #getBiasUncertaintyInNs()} is available, false otherwise. */
public boolean hasBiasUncertaintyInNs() { return isFlagSet(HAS_BIAS_UNCERTAINTY); }
Gets the clock's Bias Uncertainty (1-Sigma) in nanoseconds. The value is only available if hasBiasUncertaintyInNs() is true.
/** * Gets the clock's Bias Uncertainty (1-Sigma) in nanoseconds. * * The value is only available if {@link #hasBiasUncertaintyInNs()} is true. */
public double getBiasUncertaintyInNs() { return mBiasUncertaintyInNs; }
Sets the clock's Bias Uncertainty (1-Sigma) in nanoseconds.
/** * Sets the clock's Bias Uncertainty (1-Sigma) in nanoseconds. */
public void setBiasUncertaintyInNs(double biasUncertaintyInNs) { setFlag(HAS_BIAS_UNCERTAINTY); mBiasUncertaintyInNs = biasUncertaintyInNs; }
Resets the clock's Bias Uncertainty (1-Sigma) in nanoseconds.
/** * Resets the clock's Bias Uncertainty (1-Sigma) in nanoseconds. */
public void resetBiasUncertaintyInNs() { resetFlag(HAS_BIAS_UNCERTAINTY); mBiasUncertaintyInNs = Double.NaN; }
Returns true if getDriftInNsPerSec() is available, false otherwise.
/** * Returns true if {@link #getDriftInNsPerSec()} is available, false otherwise. */
public boolean hasDriftInNsPerSec() { return isFlagSet(HAS_DRIFT); }
Gets the clock's Drift in nanoseconds per second. A positive value indicates that the frequency is higher than the nominal frequency. The reported drift includes getDriftUncertaintyInNsPerSec(). The value is only available if hasDriftInNsPerSec() is true.
/** * Gets the clock's Drift in nanoseconds per second. * A positive value indicates that the frequency is higher than the nominal frequency. * The reported drift includes {@link #getDriftUncertaintyInNsPerSec()}. * * The value is only available if {@link #hasDriftInNsPerSec()} is true. */
public double getDriftInNsPerSec() { return mDriftInNsPerSec; }
Sets the clock's Drift in nanoseconds per second.
/** * Sets the clock's Drift in nanoseconds per second. */
public void setDriftInNsPerSec(double driftInNsPerSec) { setFlag(HAS_DRIFT); mDriftInNsPerSec = driftInNsPerSec; }
Resets the clock's Drift in nanoseconds per second.
/** * Resets the clock's Drift in nanoseconds per second. */
public void resetDriftInNsPerSec() { resetFlag(HAS_DRIFT); mDriftInNsPerSec = Double.NaN; }
Returns true if getDriftUncertaintyInNsPerSec() is available, false otherwise.
/** * Returns true if {@link #getDriftUncertaintyInNsPerSec()} is available, false otherwise. */
public boolean hasDriftUncertaintyInNsPerSec() { return isFlagSet(HAS_DRIFT_UNCERTAINTY); }
Gets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second. The value is only available if hasDriftUncertaintyInNsPerSec() is true.
/** * Gets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second. * * The value is only available if {@link #hasDriftUncertaintyInNsPerSec()} is true. */
public double getDriftUncertaintyInNsPerSec() { return mDriftUncertaintyInNsPerSec; }
Sets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second.
/** * Sets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second. */
public void setDriftUncertaintyInNsPerSec(double driftUncertaintyInNsPerSec) { setFlag(HAS_DRIFT_UNCERTAINTY); mDriftUncertaintyInNsPerSec = driftUncertaintyInNsPerSec; }
Resets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second.
/** * Resets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second. */
public void resetDriftUncertaintyInNsPerSec() { resetFlag(HAS_DRIFT_UNCERTAINTY); mDriftUncertaintyInNsPerSec = Double.NaN; } public static final Creator<GpsClock> CREATOR = new Creator<GpsClock>() { @Override public GpsClock createFromParcel(Parcel parcel) { GpsClock gpsClock = new GpsClock(); gpsClock.mFlags = (short) parcel.readInt(); gpsClock.mLeapSecond = (short) parcel.readInt(); gpsClock.mType = parcel.readByte(); gpsClock.mTimeInNs = parcel.readLong(); gpsClock.mTimeUncertaintyInNs = parcel.readDouble(); gpsClock.mFullBiasInNs = parcel.readLong(); gpsClock.mBiasInNs = parcel.readDouble(); gpsClock.mBiasUncertaintyInNs = parcel.readDouble(); gpsClock.mDriftInNsPerSec = parcel.readDouble(); gpsClock.mDriftUncertaintyInNsPerSec = parcel.readDouble(); return gpsClock; } @Override public GpsClock[] newArray(int size) { return new GpsClock[size]; } }; public void writeToParcel(Parcel parcel, int flags) { parcel.writeInt(mFlags); parcel.writeInt(mLeapSecond); parcel.writeByte(mType); parcel.writeLong(mTimeInNs); parcel.writeDouble(mTimeUncertaintyInNs); parcel.writeLong(mFullBiasInNs); parcel.writeDouble(mBiasInNs); parcel.writeDouble(mBiasUncertaintyInNs); parcel.writeDouble(mDriftInNsPerSec); parcel.writeDouble(mDriftUncertaintyInNsPerSec); } @Override public int describeContents() { return 0; } @Override public String toString() { final String format = " %-15s = %s\n"; final String formatWithUncertainty = " %-15s = %-25s %-26s = %s\n"; StringBuilder builder = new StringBuilder("GpsClock:\n"); builder.append(String.format(format, "Type", getTypeString())); builder.append(String.format(format, "LeapSecond", hasLeapSecond() ? mLeapSecond : null)); builder.append(String.format( formatWithUncertainty, "TimeInNs", mTimeInNs, "TimeUncertaintyInNs", hasTimeUncertaintyInNs() ? mTimeUncertaintyInNs : null)); builder.append(String.format( format, "FullBiasInNs", hasFullBiasInNs() ? mFullBiasInNs : null)); builder.append(String.format( formatWithUncertainty, "BiasInNs", hasBiasInNs() ? mBiasInNs : null, "BiasUncertaintyInNs", hasBiasUncertaintyInNs() ? mBiasUncertaintyInNs : null)); builder.append(String.format( formatWithUncertainty, "DriftInNsPerSec", hasDriftInNsPerSec() ? mDriftInNsPerSec : null, "DriftUncertaintyInNsPerSec", hasDriftUncertaintyInNsPerSec() ? mDriftUncertaintyInNsPerSec : null)); return builder.toString(); } private void initialize() { mFlags = HAS_NO_FLAGS; resetLeapSecond(); setType(TYPE_UNKNOWN); setTimeInNs(Long.MIN_VALUE); resetTimeUncertaintyInNs(); resetFullBiasInNs(); resetBiasInNs(); resetBiasUncertaintyInNs(); resetDriftInNsPerSec(); resetDriftUncertaintyInNsPerSec(); } private void setFlag(short flag) { mFlags |= flag; } private void resetFlag(short flag) { mFlags &= ~flag; } private boolean isFlagSet(short flag) { return (mFlags & flag) == flag; } }