/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License
 */

package android.location;

import android.annotation.TestApi;
import android.os.Parcel;
import android.os.Parcelable;

A class containing a GPS clock timestamp.

It represents a measurement of the GPS receiver's clock.

/** * A class containing a GPS clock timestamp. * * <p>It represents a measurement of the GPS receiver's clock. */
public final class GnssClock implements Parcelable { // The following enumerations must be in sync with the values declared in gps.h private static final int HAS_NO_FLAGS = 0; private static final int HAS_LEAP_SECOND = (1<<0); private static final int HAS_TIME_UNCERTAINTY = (1<<1); private static final int HAS_FULL_BIAS = (1<<2); private static final int HAS_BIAS = (1<<3); private static final int HAS_BIAS_UNCERTAINTY = (1<<4); private static final int HAS_DRIFT = (1<<5); private static final int HAS_DRIFT_UNCERTAINTY = (1<<6); // End enumerations in sync with gps.h private int mFlags; private int mLeapSecond; private long mTimeNanos; private double mTimeUncertaintyNanos; private long mFullBiasNanos; private double mBiasNanos; private double mBiasUncertaintyNanos; private double mDriftNanosPerSecond; private double mDriftUncertaintyNanosPerSecond; private int mHardwareClockDiscontinuityCount;
@hide
/** * @hide */
@TestApi public GnssClock() { initialize(); }
Sets all contents to the values stored in the provided object.
@hide
/** * Sets all contents to the values stored in the provided object. * @hide */
@TestApi public void set(GnssClock clock) { mFlags = clock.mFlags; mLeapSecond = clock.mLeapSecond; mTimeNanos = clock.mTimeNanos; mTimeUncertaintyNanos = clock.mTimeUncertaintyNanos; mFullBiasNanos = clock.mFullBiasNanos; mBiasNanos = clock.mBiasNanos; mBiasUncertaintyNanos = clock.mBiasUncertaintyNanos; mDriftNanosPerSecond = clock.mDriftNanosPerSecond; mDriftUncertaintyNanosPerSecond = clock.mDriftUncertaintyNanosPerSecond; mHardwareClockDiscontinuityCount = clock.mHardwareClockDiscontinuityCount; }
Resets all the contents to its original state.
@hide
/** * Resets all the contents to its original state. * @hide */
@TestApi public void reset() { initialize(); }
Returns true if getLeapSecond() is available, false otherwise.
/** * Returns {@code true} if {@link #getLeapSecond()} is available, {@code false} otherwise. */
public boolean hasLeapSecond() { return isFlagSet(HAS_LEAP_SECOND); }
Gets the leap second associated with the clock's time.

The sign of the value is defined by the following equation:

    UtcTimeNanos = TimeNanos - (FullBiasNanos + BiasNanos) - LeapSecond * 1,000,000,000

The value is only available if hasLeapSecond() is true.

/** * Gets the leap second associated with the clock's time. * * <p>The sign of the value is defined by the following equation: * <pre> * UtcTimeNanos = TimeNanos - (FullBiasNanos + BiasNanos) - LeapSecond * 1,000,000,000</pre> * * <p>The value is only available if {@link #hasLeapSecond()} is {@code true}. */
public int getLeapSecond() { return mLeapSecond; }
Sets the leap second associated with the clock's time.
@hide
/** * Sets the leap second associated with the clock's time. * @hide */
@TestApi public void setLeapSecond(int leapSecond) { setFlag(HAS_LEAP_SECOND); mLeapSecond = leapSecond; }
Resets the leap second associated with the clock's time.
@hide
/** * Resets the leap second associated with the clock's time. * @hide */
@TestApi public void resetLeapSecond() { resetFlag(HAS_LEAP_SECOND); mLeapSecond = Integer.MIN_VALUE; }
Gets the GNSS receiver internal hardware clock value in nanoseconds.

This value is expected to be monotonically increasing while the hardware clock remains powered on. For the case of a hardware clock that is not continuously on, see the getHardwareClockDiscontinuityCount field. The GPS time can be derived by subtracting the sum of getFullBiasNanos() and getBiasNanos() (when they are available) from this value. Sub-nanosecond accuracy can be provided by means of getBiasNanos().

The error estimate for this value (if applicable) is getTimeUncertaintyNanos().

/** * Gets the GNSS receiver internal hardware clock value in nanoseconds. * * <p>This value is expected to be monotonically increasing while the hardware clock remains * powered on. For the case of a hardware clock that is not continuously on, see the * {@link #getHardwareClockDiscontinuityCount} field. The GPS time can be derived by subtracting * the sum of {@link #getFullBiasNanos()} and {@link #getBiasNanos()} (when they are available) * from this value. Sub-nanosecond accuracy can be provided by means of {@link #getBiasNanos()}. * * <p>The error estimate for this value (if applicable) is {@link #getTimeUncertaintyNanos()}. */
public long getTimeNanos() { return mTimeNanos; }
Sets the GNSS receiver internal clock in nanoseconds.
@hide
/** * Sets the GNSS receiver internal clock in nanoseconds. * @hide */
@TestApi public void setTimeNanos(long timeNanos) { mTimeNanos = timeNanos; }
Returns true if getTimeUncertaintyNanos() is available, false otherwise.
/** * Returns {@code true} if {@link #getTimeUncertaintyNanos()} is available, {@code false} * otherwise. */
public boolean hasTimeUncertaintyNanos() { return isFlagSet(HAS_TIME_UNCERTAINTY); }
Gets the clock's time Uncertainty (1-Sigma) in nanoseconds.

The uncertainty is represented as an absolute (single sided) value.

The value is only available if hasTimeUncertaintyNanos() is true.

This value is often effectively zero (it is the reference clock by which all other times and time uncertainties are measured), and thus this field may often be 0, or not provided.

/** * Gets the clock's time Uncertainty (1-Sigma) in nanoseconds. * * <p>The uncertainty is represented as an absolute (single sided) value. * * <p>The value is only available if {@link #hasTimeUncertaintyNanos()} is {@code true}. * * <p>This value is often effectively zero (it is the reference clock by which all other times * and time uncertainties are measured), and thus this field may often be 0, or not provided. */
public double getTimeUncertaintyNanos() { return mTimeUncertaintyNanos; }
Sets the clock's Time Uncertainty (1-Sigma) in nanoseconds.
@hide
/** * Sets the clock's Time Uncertainty (1-Sigma) in nanoseconds. * @hide */
@TestApi public void setTimeUncertaintyNanos(double timeUncertaintyNanos) { setFlag(HAS_TIME_UNCERTAINTY); mTimeUncertaintyNanos = timeUncertaintyNanos; }
Resets the clock's Time Uncertainty (1-Sigma) in nanoseconds.
@hide
/** * Resets the clock's Time Uncertainty (1-Sigma) in nanoseconds. * @hide */
@TestApi public void resetTimeUncertaintyNanos() { resetFlag(HAS_TIME_UNCERTAINTY); mTimeUncertaintyNanos = Double.NaN; }
Returns true if getFullBiasNanos() is available, false otherwise.
/** * Returns {@code true} if {@link #getFullBiasNanos()} is available, {@code false} otherwise. */
public boolean hasFullBiasNanos() { return isFlagSet(HAS_FULL_BIAS); }
Gets the difference between hardware clock (getTimeNanos()) inside GPS receiver and the true GPS time since 0000Z, January 6, 1980, in nanoseconds.

This value is available if the receiver has estimated GPS time. If the computed time is for a non-GPS constellation, the time offset of that constellation to GPS has to be applied to fill this value. The value is only available if hasFullBiasNanos() is true.

The error estimate for the sum of this field and getBiasNanos is getBiasUncertaintyNanos().

The sign of the value is defined by the following equation:

    local estimate of GPS time = TimeNanos - (FullBiasNanos + BiasNanos)
/** * Gets the difference between hardware clock ({@link #getTimeNanos()}) inside GPS receiver and * the true GPS time since 0000Z, January 6, 1980, in nanoseconds. * * <p>This value is available if the receiver has estimated GPS time. If the computed time is * for a non-GPS constellation, the time offset of that constellation to GPS has to be applied * to fill this value. The value is only available if {@link #hasFullBiasNanos()} is * {@code true}. * * <p>The error estimate for the sum of this field and {@link #getBiasNanos} is * {@link #getBiasUncertaintyNanos()}. * * <p>The sign of the value is defined by the following equation: * * <pre> * local estimate of GPS time = TimeNanos - (FullBiasNanos + BiasNanos)</pre> */
public long getFullBiasNanos() { return mFullBiasNanos; }
Sets the full bias in nanoseconds.
@hide
/** * Sets the full bias in nanoseconds. * @hide */
@TestApi public void setFullBiasNanos(long value) { setFlag(HAS_FULL_BIAS); mFullBiasNanos = value; }
Resets the full bias in nanoseconds.
@hide
/** * Resets the full bias in nanoseconds. * @hide */
@TestApi public void resetFullBiasNanos() { resetFlag(HAS_FULL_BIAS); mFullBiasNanos = Long.MIN_VALUE; }
Returns true if getBiasNanos() is available, false otherwise.
/** * Returns {@code true} if {@link #getBiasNanos()} is available, {@code false} otherwise. */
public boolean hasBiasNanos() { return isFlagSet(HAS_BIAS); }
Gets the clock's sub-nanosecond bias.

See the description of how this field is part of converting from hardware clock time, to GPS time, in getFullBiasNanos().

The error estimate for the sum of this field and getFullBiasNanos is getBiasUncertaintyNanos().

The value is only available if hasBiasNanos() is true.

/** * Gets the clock's sub-nanosecond bias. * * <p>See the description of how this field is part of converting from hardware clock time, to * GPS time, in {@link #getFullBiasNanos()}. * * <p>The error estimate for the sum of this field and {@link #getFullBiasNanos} is * {@link #getBiasUncertaintyNanos()}. * * <p>The value is only available if {@link #hasBiasNanos()} is {@code true}. */
public double getBiasNanos() { return mBiasNanos; }
Sets the sub-nanosecond bias.
@hide
/** * Sets the sub-nanosecond bias. * @hide */
@TestApi public void setBiasNanos(double biasNanos) { setFlag(HAS_BIAS); mBiasNanos = biasNanos; }
Resets the clock's Bias in nanoseconds.
@hide
/** * Resets the clock's Bias in nanoseconds. * @hide */
@TestApi public void resetBiasNanos() { resetFlag(HAS_BIAS); mBiasNanos = Double.NaN; }
Returns true if getBiasUncertaintyNanos() is available, false otherwise.
/** * Returns {@code true} if {@link #getBiasUncertaintyNanos()} is available, {@code false} * otherwise. */
public boolean hasBiasUncertaintyNanos() { return isFlagSet(HAS_BIAS_UNCERTAINTY); }
Gets the clock's Bias Uncertainty (1-Sigma) in nanoseconds.

See the description of how this field provides the error estimate in the conversion from hardware clock time, to GPS time, in getFullBiasNanos().

The value is only available if hasBiasUncertaintyNanos() is true.

/** * Gets the clock's Bias Uncertainty (1-Sigma) in nanoseconds. * * <p>See the description of how this field provides the error estimate in the conversion from * hardware clock time, to GPS time, in {@link #getFullBiasNanos()}. * * <p>The value is only available if {@link #hasBiasUncertaintyNanos()} is {@code true}. */
public double getBiasUncertaintyNanos() { return mBiasUncertaintyNanos; }
Sets the clock's Bias Uncertainty (1-Sigma) in nanoseconds.
@hide
/** * Sets the clock's Bias Uncertainty (1-Sigma) in nanoseconds. * @hide */
@TestApi public void setBiasUncertaintyNanos(double biasUncertaintyNanos) { setFlag(HAS_BIAS_UNCERTAINTY); mBiasUncertaintyNanos = biasUncertaintyNanos; }
Resets the clock's Bias Uncertainty (1-Sigma) in nanoseconds.
@hide
/** * Resets the clock's Bias Uncertainty (1-Sigma) in nanoseconds. * @hide */
@TestApi public void resetBiasUncertaintyNanos() { resetFlag(HAS_BIAS_UNCERTAINTY); mBiasUncertaintyNanos = Double.NaN; }
Returns true if getDriftNanosPerSecond() is available, false otherwise.
/** * Returns {@code true} if {@link #getDriftNanosPerSecond()} is available, {@code false} * otherwise. */
public boolean hasDriftNanosPerSecond() { return isFlagSet(HAS_DRIFT); }
Gets the clock's Drift in nanoseconds per second.

This value is the instantaneous time-derivative of the value provided by getBiasNanos().

A positive value indicates that the frequency is higher than the nominal (e.g. GPS master clock) frequency. The error estimate for this reported drift is getDriftUncertaintyNanosPerSecond().

The value is only available if hasDriftNanosPerSecond() is true.

/** * Gets the clock's Drift in nanoseconds per second. * * <p>This value is the instantaneous time-derivative of the value provided by * {@link #getBiasNanos()}. * * <p>A positive value indicates that the frequency is higher than the nominal (e.g. GPS master * clock) frequency. The error estimate for this reported drift is * {@link #getDriftUncertaintyNanosPerSecond()}. * * <p>The value is only available if {@link #hasDriftNanosPerSecond()} is {@code true}. */
public double getDriftNanosPerSecond() { return mDriftNanosPerSecond; }
Sets the clock's Drift in nanoseconds per second.
@hide
/** * Sets the clock's Drift in nanoseconds per second. * @hide */
@TestApi public void setDriftNanosPerSecond(double driftNanosPerSecond) { setFlag(HAS_DRIFT); mDriftNanosPerSecond = driftNanosPerSecond; }
Resets the clock's Drift in nanoseconds per second.
@hide
/** * Resets the clock's Drift in nanoseconds per second. * @hide */
@TestApi public void resetDriftNanosPerSecond() { resetFlag(HAS_DRIFT); mDriftNanosPerSecond = Double.NaN; }
Returns true if getDriftUncertaintyNanosPerSecond() is available, false otherwise.
/** * Returns {@code true} if {@link #getDriftUncertaintyNanosPerSecond()} is available, * {@code false} otherwise. */
public boolean hasDriftUncertaintyNanosPerSecond() { return isFlagSet(HAS_DRIFT_UNCERTAINTY); }
Gets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second.

The value is only available if hasDriftUncertaintyNanosPerSecond() is true.

/** * Gets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second. * * <p>The value is only available if {@link #hasDriftUncertaintyNanosPerSecond()} is * {@code true}. */
public double getDriftUncertaintyNanosPerSecond() { return mDriftUncertaintyNanosPerSecond; }
Sets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second.
@hide
/** * Sets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second. * @hide */
@TestApi public void setDriftUncertaintyNanosPerSecond(double driftUncertaintyNanosPerSecond) { setFlag(HAS_DRIFT_UNCERTAINTY); mDriftUncertaintyNanosPerSecond = driftUncertaintyNanosPerSecond; }
Resets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second.
@hide
/** * Resets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second. * @hide */
@TestApi public void resetDriftUncertaintyNanosPerSecond() { resetFlag(HAS_DRIFT_UNCERTAINTY); mDriftUncertaintyNanosPerSecond = Double.NaN; }
Gets count of hardware clock discontinuities.

When this value stays the same, vs. a value in a previously reported GnssClock, it can be safely assumed that the TimeNanos value has been derived from a clock that has been running continuously - e.g. a single continuously powered crystal oscillator, and thus the (FullBiasNanos + BiasNanos) offset can be modelled with traditional clock bias & drift models.

Each time this value changes, vs. the value in a previously reported GnssClock, that suggests the hardware clock may have experienced a discontinuity (e.g. a power cycle or other anomaly), so that any assumptions about modelling a smoothly changing (FullBiasNanos + BiasNanos) offset, and a smoothly growing (TimeNanos) between this and the previously reported GnssClock, should be reset.

/** * Gets count of hardware clock discontinuities. * * <p>When this value stays the same, vs. a value in a previously reported {@link GnssClock}, it * can be safely assumed that the {@code TimeNanos} value has been derived from a clock that has * been running continuously - e.g. a single continuously powered crystal oscillator, and thus * the {@code (FullBiasNanos + BiasNanos)} offset can be modelled with traditional clock bias * &amp; drift models. * * <p>Each time this value changes, vs. the value in a previously reported {@link GnssClock}, * that suggests the hardware clock may have experienced a discontinuity (e.g. a power cycle or * other anomaly), so that any assumptions about modelling a smoothly changing * {@code (FullBiasNanos + BiasNanos)} offset, and a smoothly growing {@code (TimeNanos)} * between this and the previously reported {@code GnssClock}, should be reset. */
public int getHardwareClockDiscontinuityCount() { return mHardwareClockDiscontinuityCount; }
Sets count of last hardware clock discontinuity.
@hide
/** * Sets count of last hardware clock discontinuity. * @hide */
@TestApi public void setHardwareClockDiscontinuityCount(int value) { mHardwareClockDiscontinuityCount = value; } public static final Creator<GnssClock> CREATOR = new Creator<GnssClock>() { @Override public GnssClock createFromParcel(Parcel parcel) { GnssClock gpsClock = new GnssClock(); gpsClock.mFlags = parcel.readInt(); gpsClock.mLeapSecond = parcel.readInt(); gpsClock.mTimeNanos = parcel.readLong(); gpsClock.mTimeUncertaintyNanos = parcel.readDouble(); gpsClock.mFullBiasNanos = parcel.readLong(); gpsClock.mBiasNanos = parcel.readDouble(); gpsClock.mBiasUncertaintyNanos = parcel.readDouble(); gpsClock.mDriftNanosPerSecond = parcel.readDouble(); gpsClock.mDriftUncertaintyNanosPerSecond = parcel.readDouble(); gpsClock.mHardwareClockDiscontinuityCount = parcel.readInt(); return gpsClock; } @Override public GnssClock[] newArray(int size) { return new GnssClock[size]; } }; @Override public void writeToParcel(Parcel parcel, int flags) { parcel.writeInt(mFlags); parcel.writeInt(mLeapSecond); parcel.writeLong(mTimeNanos); parcel.writeDouble(mTimeUncertaintyNanos); parcel.writeLong(mFullBiasNanos); parcel.writeDouble(mBiasNanos); parcel.writeDouble(mBiasUncertaintyNanos); parcel.writeDouble(mDriftNanosPerSecond); parcel.writeDouble(mDriftUncertaintyNanosPerSecond); parcel.writeInt(mHardwareClockDiscontinuityCount); } @Override public int describeContents() { return 0; } @Override public String toString() { final String format = " %-15s = %s\n"; final String formatWithUncertainty = " %-15s = %-25s %-26s = %s\n"; StringBuilder builder = new StringBuilder("GnssClock:\n"); builder.append(String.format(format, "LeapSecond", hasLeapSecond() ? mLeapSecond : null)); builder.append(String.format( formatWithUncertainty, "TimeNanos", mTimeNanos, "TimeUncertaintyNanos", hasTimeUncertaintyNanos() ? mTimeUncertaintyNanos : null)); builder.append(String.format( format, "FullBiasNanos", hasFullBiasNanos() ? mFullBiasNanos : null)); builder.append(String.format( formatWithUncertainty, "BiasNanos", hasBiasNanos() ? mBiasNanos : null, "BiasUncertaintyNanos", hasBiasUncertaintyNanos() ? mBiasUncertaintyNanos : null)); builder.append(String.format( formatWithUncertainty, "DriftNanosPerSecond", hasDriftNanosPerSecond() ? mDriftNanosPerSecond : null, "DriftUncertaintyNanosPerSecond", hasDriftUncertaintyNanosPerSecond() ? mDriftUncertaintyNanosPerSecond : null)); builder.append(String.format( format, "HardwareClockDiscontinuityCount", mHardwareClockDiscontinuityCount)); return builder.toString(); } private void initialize() { mFlags = HAS_NO_FLAGS; resetLeapSecond(); setTimeNanos(Long.MIN_VALUE); resetTimeUncertaintyNanos(); resetFullBiasNanos(); resetBiasNanos(); resetBiasUncertaintyNanos(); resetDriftNanosPerSecond(); resetDriftUncertaintyNanosPerSecond(); setHardwareClockDiscontinuityCount(Integer.MIN_VALUE); } private void setFlag(int flag) { mFlags |= flag; } private void resetFlag(int flag) { mFlags &= ~flag; } private boolean isFlagSet(int flag) { return (mFlags & flag) == flag; } }