/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.database.sqlite;

import android.database.Cursor;
import android.database.CursorWindow;
import android.database.DatabaseUtils;
import android.database.sqlite.SQLiteDebug.DbStats;
import android.os.CancellationSignal;
import android.os.OperationCanceledException;
import android.os.ParcelFileDescriptor;
import android.os.SystemClock;
import android.os.Trace;
import android.util.Log;
import android.util.LruCache;
import android.util.Printer;

import dalvik.system.BlockGuard;
import dalvik.system.CloseGuard;

import java.io.File;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import java.util.Map;


Represents a SQLite database connection. Each connection wraps an instance of a native sqlite3 object.

When database connection pooling is enabled, there can be multiple active connections to the same database. Otherwise there is typically only one connection per database.

When the SQLite WAL feature is enabled, multiple readers and one writer can concurrently access the database. Without WAL, readers and writers are mutually exclusive.

Ownership and concurrency guarantees

Connection objects are not thread-safe. They are acquired as needed to perform a database operation and are then returned to the pool. At any given time, a connection is either owned and used by a SQLiteSession object or the SQLiteConnectionPool. Those classes are responsible for serializing operations to guard against concurrent use of a connection.

The guarantee of having a single owner allows this class to be implemented without locks and greatly simplifies resource management.

Encapsulation guarantees

The connection object object owns *all* of the SQLite related native objects that are associated with the connection. What's more, there are no other objects in the system that are capable of obtaining handles to those native objects. Consequently, when the connection is closed, we do not have to worry about what other components might have references to its associated SQLite state -- there are none.

Encapsulation is what ensures that the connection object's lifecycle does not become a tortured mess of finalizers and reference queues.

Reentrance

This class must tolerate reentrant execution of SQLite operations because triggers may call custom SQLite functions that perform additional queries.

@hide
/** * Represents a SQLite database connection. * Each connection wraps an instance of a native <code>sqlite3</code> object. * <p> * When database connection pooling is enabled, there can be multiple active * connections to the same database. Otherwise there is typically only one * connection per database. * </p><p> * When the SQLite WAL feature is enabled, multiple readers and one writer * can concurrently access the database. Without WAL, readers and writers * are mutually exclusive. * </p> * * <h2>Ownership and concurrency guarantees</h2> * <p> * Connection objects are not thread-safe. They are acquired as needed to * perform a database operation and are then returned to the pool. At any * given time, a connection is either owned and used by a {@link SQLiteSession} * object or the {@link SQLiteConnectionPool}. Those classes are * responsible for serializing operations to guard against concurrent * use of a connection. * </p><p> * The guarantee of having a single owner allows this class to be implemented * without locks and greatly simplifies resource management. * </p> * * <h2>Encapsulation guarantees</h2> * <p> * The connection object object owns *all* of the SQLite related native * objects that are associated with the connection. What's more, there are * no other objects in the system that are capable of obtaining handles to * those native objects. Consequently, when the connection is closed, we do * not have to worry about what other components might have references to * its associated SQLite state -- there are none. * </p><p> * Encapsulation is what ensures that the connection object's * lifecycle does not become a tortured mess of finalizers and reference * queues. * </p> * * <h2>Reentrance</h2> * <p> * This class must tolerate reentrant execution of SQLite operations because * triggers may call custom SQLite functions that perform additional queries. * </p> * * @hide */
public final class SQLiteConnection implements CancellationSignal.OnCancelListener { private static final String TAG = "SQLiteConnection"; private static final boolean DEBUG = false; private static final String[] EMPTY_STRING_ARRAY = new String[0]; private static final byte[] EMPTY_BYTE_ARRAY = new byte[0]; private final CloseGuard mCloseGuard = CloseGuard.get(); private final SQLiteConnectionPool mPool; private final SQLiteDatabaseConfiguration mConfiguration; private final int mConnectionId; private final boolean mIsPrimaryConnection; private final boolean mIsReadOnlyConnection; private final PreparedStatementCache mPreparedStatementCache; private PreparedStatement mPreparedStatementPool; // The recent operations log. private final OperationLog mRecentOperations; // The native SQLiteConnection pointer. (FOR INTERNAL USE ONLY) private long mConnectionPtr; private boolean mOnlyAllowReadOnlyOperations; // The number of times attachCancellationSignal has been called. // Because SQLite statement execution can be reentrant, we keep track of how many // times we have attempted to attach a cancellation signal to the connection so that // we can ensure that we detach the signal at the right time. private int mCancellationSignalAttachCount; private static native long nativeOpen(String path, int openFlags, String label, boolean enableTrace, boolean enableProfile, int lookasideSlotSize, int lookasideSlotCount); private static native void nativeClose(long connectionPtr); private static native void nativeRegisterCustomFunction(long connectionPtr, SQLiteCustomFunction function); private static native void nativeRegisterLocalizedCollators(long connectionPtr, String locale); private static native long nativePrepareStatement(long connectionPtr, String sql); private static native void nativeFinalizeStatement(long connectionPtr, long statementPtr); private static native int nativeGetParameterCount(long connectionPtr, long statementPtr); private static native boolean nativeIsReadOnly(long connectionPtr, long statementPtr); private static native int nativeGetColumnCount(long connectionPtr, long statementPtr); private static native String nativeGetColumnName(long connectionPtr, long statementPtr, int index); private static native void nativeBindNull(long connectionPtr, long statementPtr, int index); private static native void nativeBindLong(long connectionPtr, long statementPtr, int index, long value); private static native void nativeBindDouble(long connectionPtr, long statementPtr, int index, double value); private static native void nativeBindString(long connectionPtr, long statementPtr, int index, String value); private static native void nativeBindBlob(long connectionPtr, long statementPtr, int index, byte[] value); private static native void nativeResetStatementAndClearBindings( long connectionPtr, long statementPtr); private static native void nativeExecute(long connectionPtr, long statementPtr); private static native long nativeExecuteForLong(long connectionPtr, long statementPtr); private static native String nativeExecuteForString(long connectionPtr, long statementPtr); private static native int nativeExecuteForBlobFileDescriptor( long connectionPtr, long statementPtr); private static native int nativeExecuteForChangedRowCount(long connectionPtr, long statementPtr); private static native long nativeExecuteForLastInsertedRowId( long connectionPtr, long statementPtr); private static native long nativeExecuteForCursorWindow( long connectionPtr, long statementPtr, long windowPtr, int startPos, int requiredPos, boolean countAllRows); private static native int nativeGetDbLookaside(long connectionPtr); private static native void nativeCancel(long connectionPtr); private static native void nativeResetCancel(long connectionPtr, boolean cancelable); private SQLiteConnection(SQLiteConnectionPool pool, SQLiteDatabaseConfiguration configuration, int connectionId, boolean primaryConnection) { mPool = pool; mRecentOperations = new OperationLog(mPool); mConfiguration = new SQLiteDatabaseConfiguration(configuration); mConnectionId = connectionId; mIsPrimaryConnection = primaryConnection; mIsReadOnlyConnection = (configuration.openFlags & SQLiteDatabase.OPEN_READONLY) != 0; mPreparedStatementCache = new PreparedStatementCache( mConfiguration.maxSqlCacheSize); mCloseGuard.open("close"); } @Override protected void finalize() throws Throwable { try { if (mPool != null && mConnectionPtr != 0) { mPool.onConnectionLeaked(); } dispose(true); } finally { super.finalize(); } } // Called by SQLiteConnectionPool only. static SQLiteConnection open(SQLiteConnectionPool pool, SQLiteDatabaseConfiguration configuration, int connectionId, boolean primaryConnection) { SQLiteConnection connection = new SQLiteConnection(pool, configuration, connectionId, primaryConnection); try { connection.open(); return connection; } catch (SQLiteException ex) { connection.dispose(false); throw ex; } } // Called by SQLiteConnectionPool only. // Closes the database closes and releases all of its associated resources. // Do not call methods on the connection after it is closed. It will probably crash. void close() { dispose(false); } private void open() { mConnectionPtr = nativeOpen(mConfiguration.path, mConfiguration.openFlags, mConfiguration.label, SQLiteDebug.DEBUG_SQL_STATEMENTS, SQLiteDebug.DEBUG_SQL_TIME, mConfiguration.lookasideSlotSize, mConfiguration.lookasideSlotCount); setPageSize(); setForeignKeyModeFromConfiguration(); setWalModeFromConfiguration(); setJournalSizeLimit(); setAutoCheckpointInterval(); setLocaleFromConfiguration(); // Register custom functions. final int functionCount = mConfiguration.customFunctions.size(); for (int i = 0; i < functionCount; i++) { SQLiteCustomFunction function = mConfiguration.customFunctions.get(i); nativeRegisterCustomFunction(mConnectionPtr, function); } } private void dispose(boolean finalized) { if (mCloseGuard != null) { if (finalized) { mCloseGuard.warnIfOpen(); } mCloseGuard.close(); } if (mConnectionPtr != 0) { final int cookie = mRecentOperations.beginOperation("close", null, null); try { mPreparedStatementCache.evictAll(); nativeClose(mConnectionPtr); mConnectionPtr = 0; } finally { mRecentOperations.endOperation(cookie); } } } private void setPageSize() { if (!mConfiguration.isInMemoryDb() && !mIsReadOnlyConnection) { final long newValue = SQLiteGlobal.getDefaultPageSize(); long value = executeForLong("PRAGMA page_size", null, null); if (value != newValue) { execute("PRAGMA page_size=" + newValue, null, null); } } } private void setAutoCheckpointInterval() { if (!mConfiguration.isInMemoryDb() && !mIsReadOnlyConnection) { final long newValue = SQLiteGlobal.getWALAutoCheckpoint(); long value = executeForLong("PRAGMA wal_autocheckpoint", null, null); if (value != newValue) { executeForLong("PRAGMA wal_autocheckpoint=" + newValue, null, null); } } } private void setJournalSizeLimit() { if (!mConfiguration.isInMemoryDb() && !mIsReadOnlyConnection) { final long newValue = SQLiteGlobal.getJournalSizeLimit(); long value = executeForLong("PRAGMA journal_size_limit", null, null); if (value != newValue) { executeForLong("PRAGMA journal_size_limit=" + newValue, null, null); } } } private void setForeignKeyModeFromConfiguration() { if (!mIsReadOnlyConnection) { final long newValue = mConfiguration.foreignKeyConstraintsEnabled ? 1 : 0; long value = executeForLong("PRAGMA foreign_keys", null, null); if (value != newValue) { execute("PRAGMA foreign_keys=" + newValue, null, null); } } } private void setWalModeFromConfiguration() { if (!mConfiguration.isInMemoryDb() && !mIsReadOnlyConnection) { final boolean walEnabled = (mConfiguration.openFlags & SQLiteDatabase.ENABLE_WRITE_AHEAD_LOGGING) != 0; // Use compatibility WAL unless an app explicitly set journal/synchronous mode // or DISABLE_COMPATIBILITY_WAL flag is set final boolean useCompatibilityWal = mConfiguration.useCompatibilityWal(); if (walEnabled || useCompatibilityWal) { setJournalMode("WAL"); if (mConfiguration.syncMode != null) { setSyncMode(mConfiguration.syncMode); } else if (useCompatibilityWal && SQLiteCompatibilityWalFlags.areFlagsSet()) { setSyncMode(SQLiteCompatibilityWalFlags.getWALSyncMode()); } else { setSyncMode(SQLiteGlobal.getWALSyncMode()); } maybeTruncateWalFile(); } else { setJournalMode(mConfiguration.journalMode == null ? SQLiteGlobal.getDefaultJournalMode() : mConfiguration.journalMode); setSyncMode(mConfiguration.syncMode == null ? SQLiteGlobal.getDefaultSyncMode() : mConfiguration.syncMode); } } }
If the WAL file exists and larger than a threshold, truncate it by executing PRAGMA wal_checkpoint.
/** * If the WAL file exists and larger than a threshold, truncate it by executing * PRAGMA wal_checkpoint. */
private void maybeTruncateWalFile() { final long threshold = SQLiteGlobal.getWALTruncateSize(); if (DEBUG) { Log.d(TAG, "Truncate threshold=" + threshold); } if (threshold == 0) { return; } final File walFile = new File(mConfiguration.path + "-wal"); if (!walFile.isFile()) { return; } final long size = walFile.length(); if (size < threshold) { if (DEBUG) { Log.d(TAG, walFile.getAbsolutePath() + " " + size + " bytes: No need to truncate"); } return; } Log.i(TAG, walFile.getAbsolutePath() + " " + size + " bytes: Bigger than " + threshold + "; truncating"); try { executeForString("PRAGMA wal_checkpoint(TRUNCATE)", null, null); } catch (SQLiteException e) { Log.w(TAG, "Failed to truncate the -wal file", e); } } private void setSyncMode(String newValue) { String value = executeForString("PRAGMA synchronous", null, null); if (!canonicalizeSyncMode(value).equalsIgnoreCase( canonicalizeSyncMode(newValue))) { execute("PRAGMA synchronous=" + newValue, null, null); } } private static String canonicalizeSyncMode(String value) { switch (value) { case "0": return "OFF"; case "1": return "NORMAL"; case "2": return "FULL"; } return value; } private void setJournalMode(String newValue) { String value = executeForString("PRAGMA journal_mode", null, null); if (!value.equalsIgnoreCase(newValue)) { try { String result = executeForString("PRAGMA journal_mode=" + newValue, null, null); if (result.equalsIgnoreCase(newValue)) { return; } // PRAGMA journal_mode silently fails and returns the original journal // mode in some cases if the journal mode could not be changed. } catch (SQLiteDatabaseLockedException ex) { // This error (SQLITE_BUSY) occurs if one connection has the database // open in WAL mode and another tries to change it to non-WAL. } // Because we always disable WAL mode when a database is first opened // (even if we intend to re-enable it), we can encounter problems if // there is another open connection to the database somewhere. // This can happen for a variety of reasons such as an application opening // the same database in multiple processes at the same time or if there is a // crashing content provider service that the ActivityManager has // removed from its registry but whose process hasn't quite died yet // by the time it is restarted in a new process. // // If we don't change the journal mode, nothing really bad happens. // In the worst case, an application that enables WAL might not actually // get it, although it can still use connection pooling. Log.w(TAG, "Could not change the database journal mode of '" + mConfiguration.label + "' from '" + value + "' to '" + newValue + "' because the database is locked. This usually means that " + "there are other open connections to the database which prevents " + "the database from enabling or disabling write-ahead logging mode. " + "Proceeding without changing the journal mode."); } } private void setLocaleFromConfiguration() { if ((mConfiguration.openFlags & SQLiteDatabase.NO_LOCALIZED_COLLATORS) != 0) { return; } // Register the localized collators. final String newLocale = mConfiguration.locale.toString(); nativeRegisterLocalizedCollators(mConnectionPtr, newLocale); // If the database is read-only, we cannot modify the android metadata table // or existing indexes. if (mIsReadOnlyConnection) { return; } try { // Ensure the android metadata table exists. execute("CREATE TABLE IF NOT EXISTS android_metadata (locale TEXT)", null, null); // Check whether the locale was actually changed. final String oldLocale = executeForString("SELECT locale FROM android_metadata " + "UNION SELECT NULL ORDER BY locale DESC LIMIT 1", null, null); if (oldLocale != null && oldLocale.equals(newLocale)) { return; } // Go ahead and update the indexes using the new locale. execute("BEGIN", null, null); boolean success = false; try { execute("DELETE FROM android_metadata", null, null); execute("INSERT INTO android_metadata (locale) VALUES(?)", new Object[] { newLocale }, null); execute("REINDEX LOCALIZED", null, null); success = true; } finally { execute(success ? "COMMIT" : "ROLLBACK", null, null); } } catch (RuntimeException ex) { throw new SQLiteException("Failed to change locale for db '" + mConfiguration.label + "' to '" + newLocale + "'.", ex); } } // Called by SQLiteConnectionPool only. void reconfigure(SQLiteDatabaseConfiguration configuration) { mOnlyAllowReadOnlyOperations = false; // Register custom functions. final int functionCount = configuration.customFunctions.size(); for (int i = 0; i < functionCount; i++) { SQLiteCustomFunction function = configuration.customFunctions.get(i); if (!mConfiguration.customFunctions.contains(function)) { nativeRegisterCustomFunction(mConnectionPtr, function); } } // Remember what changed. boolean foreignKeyModeChanged = configuration.foreignKeyConstraintsEnabled != mConfiguration.foreignKeyConstraintsEnabled; boolean walModeChanged = ((configuration.openFlags ^ mConfiguration.openFlags) & (SQLiteDatabase.ENABLE_WRITE_AHEAD_LOGGING | SQLiteDatabase.DISABLE_COMPATIBILITY_WAL)) != 0; boolean localeChanged = !configuration.locale.equals(mConfiguration.locale); // Update configuration parameters. mConfiguration.updateParametersFrom(configuration); // Update prepared statement cache size. mPreparedStatementCache.resize(configuration.maxSqlCacheSize); // Update foreign key mode. if (foreignKeyModeChanged) { setForeignKeyModeFromConfiguration(); } // Update WAL. if (walModeChanged) { setWalModeFromConfiguration(); } // Update locale. if (localeChanged) { setLocaleFromConfiguration(); } } // Called by SQLiteConnectionPool only. // When set to true, executing write operations will throw SQLiteException. // Preparing statements that might write is ok, just don't execute them. void setOnlyAllowReadOnlyOperations(boolean readOnly) { mOnlyAllowReadOnlyOperations = readOnly; } // Called by SQLiteConnectionPool only. // Returns true if the prepared statement cache contains the specified SQL. boolean isPreparedStatementInCache(String sql) { return mPreparedStatementCache.get(sql) != null; }
Gets the unique id of this connection.
Returns:The connection id.
/** * Gets the unique id of this connection. * @return The connection id. */
public int getConnectionId() { return mConnectionId; }
Returns true if this is the primary database connection.
Returns:True if this is the primary database connection.
/** * Returns true if this is the primary database connection. * @return True if this is the primary database connection. */
public boolean isPrimaryConnection() { return mIsPrimaryConnection; }
Prepares a statement for execution but does not bind its parameters or execute it.

This method can be used to check for syntax errors during compilation prior to execution of the statement. If the outStatementInfo argument is not null, the provided SQLiteStatementInfo object is populated with information about the statement.

A prepared statement makes no reference to the arguments that may eventually be bound to it, consequently it it possible to cache certain prepared statements such as SELECT or INSERT/UPDATE statements. If the statement is cacheable, then it will be stored in the cache for later.

To take advantage of this behavior as an optimization, the connection pool provides a method to acquire a connection that already has a given SQL statement in its prepared statement cache so that it is ready for execution.

Params:
  • sql – The SQL statement to prepare.
  • outStatementInfo – The SQLiteStatementInfo object to populate with information about the statement, or null if none.
Throws:
/** * Prepares a statement for execution but does not bind its parameters or execute it. * <p> * This method can be used to check for syntax errors during compilation * prior to execution of the statement. If the {@code outStatementInfo} argument * is not null, the provided {@link SQLiteStatementInfo} object is populated * with information about the statement. * </p><p> * A prepared statement makes no reference to the arguments that may eventually * be bound to it, consequently it it possible to cache certain prepared statements * such as SELECT or INSERT/UPDATE statements. If the statement is cacheable, * then it will be stored in the cache for later. * </p><p> * To take advantage of this behavior as an optimization, the connection pool * provides a method to acquire a connection that already has a given SQL statement * in its prepared statement cache so that it is ready for execution. * </p> * * @param sql The SQL statement to prepare. * @param outStatementInfo The {@link SQLiteStatementInfo} object to populate * with information about the statement, or null if none. * * @throws SQLiteException if an error occurs, such as a syntax error. */
public void prepare(String sql, SQLiteStatementInfo outStatementInfo) { if (sql == null) { throw new IllegalArgumentException("sql must not be null."); } final int cookie = mRecentOperations.beginOperation("prepare", sql, null); try { final PreparedStatement statement = acquirePreparedStatement(sql); try { if (outStatementInfo != null) { outStatementInfo.numParameters = statement.mNumParameters; outStatementInfo.readOnly = statement.mReadOnly; final int columnCount = nativeGetColumnCount( mConnectionPtr, statement.mStatementPtr); if (columnCount == 0) { outStatementInfo.columnNames = EMPTY_STRING_ARRAY; } else { outStatementInfo.columnNames = new String[columnCount]; for (int i = 0; i < columnCount; i++) { outStatementInfo.columnNames[i] = nativeGetColumnName( mConnectionPtr, statement.mStatementPtr, i); } } } } finally { releasePreparedStatement(statement); } } catch (RuntimeException ex) { mRecentOperations.failOperation(cookie, ex); throw ex; } finally { mRecentOperations.endOperation(cookie); } }
Executes a statement that does not return a result.
Params:
  • sql – The SQL statement to execute.
  • bindArgs – The arguments to bind, or null if none.
  • cancellationSignal – A signal to cancel the operation in progress, or null if none.
Throws:
/** * Executes a statement that does not return a result. * * @param sql The SQL statement to execute. * @param bindArgs The arguments to bind, or null if none. * @param cancellationSignal A signal to cancel the operation in progress, or null if none. * * @throws SQLiteException if an error occurs, such as a syntax error * or invalid number of bind arguments. * @throws OperationCanceledException if the operation was canceled. */
public void execute(String sql, Object[] bindArgs, CancellationSignal cancellationSignal) { if (sql == null) { throw new IllegalArgumentException("sql must not be null."); } final int cookie = mRecentOperations.beginOperation("execute", sql, bindArgs); try { final PreparedStatement statement = acquirePreparedStatement(sql); try { throwIfStatementForbidden(statement); bindArguments(statement, bindArgs); applyBlockGuardPolicy(statement); attachCancellationSignal(cancellationSignal); try { nativeExecute(mConnectionPtr, statement.mStatementPtr); } finally { detachCancellationSignal(cancellationSignal); } } finally { releasePreparedStatement(statement); } } catch (RuntimeException ex) { mRecentOperations.failOperation(cookie, ex); throw ex; } finally { mRecentOperations.endOperation(cookie); } }
Executes a statement that returns a single long result.
Params:
  • sql – The SQL statement to execute.
  • bindArgs – The arguments to bind, or null if none.
  • cancellationSignal – A signal to cancel the operation in progress, or null if none.
Throws:
Returns:The value of the first column in the first row of the result set as a long, or zero if none.
/** * Executes a statement that returns a single <code>long</code> result. * * @param sql The SQL statement to execute. * @param bindArgs The arguments to bind, or null if none. * @param cancellationSignal A signal to cancel the operation in progress, or null if none. * @return The value of the first column in the first row of the result set * as a <code>long</code>, or zero if none. * * @throws SQLiteException if an error occurs, such as a syntax error * or invalid number of bind arguments. * @throws OperationCanceledException if the operation was canceled. */
public long executeForLong(String sql, Object[] bindArgs, CancellationSignal cancellationSignal) { if (sql == null) { throw new IllegalArgumentException("sql must not be null."); } final int cookie = mRecentOperations.beginOperation("executeForLong", sql, bindArgs); try { final PreparedStatement statement = acquirePreparedStatement(sql); try { throwIfStatementForbidden(statement); bindArguments(statement, bindArgs); applyBlockGuardPolicy(statement); attachCancellationSignal(cancellationSignal); try { return nativeExecuteForLong(mConnectionPtr, statement.mStatementPtr); } finally { detachCancellationSignal(cancellationSignal); } } finally { releasePreparedStatement(statement); } } catch (RuntimeException ex) { mRecentOperations.failOperation(cookie, ex); throw ex; } finally { mRecentOperations.endOperation(cookie); } }
Executes a statement that returns a single String result.
Params:
  • sql – The SQL statement to execute.
  • bindArgs – The arguments to bind, or null if none.
  • cancellationSignal – A signal to cancel the operation in progress, or null if none.
Throws:
Returns:The value of the first column in the first row of the result set as a String, or null if none.
/** * Executes a statement that returns a single {@link String} result. * * @param sql The SQL statement to execute. * @param bindArgs The arguments to bind, or null if none. * @param cancellationSignal A signal to cancel the operation in progress, or null if none. * @return The value of the first column in the first row of the result set * as a <code>String</code>, or null if none. * * @throws SQLiteException if an error occurs, such as a syntax error * or invalid number of bind arguments. * @throws OperationCanceledException if the operation was canceled. */
public String executeForString(String sql, Object[] bindArgs, CancellationSignal cancellationSignal) { if (sql == null) { throw new IllegalArgumentException("sql must not be null."); } final int cookie = mRecentOperations.beginOperation("executeForString", sql, bindArgs); try { final PreparedStatement statement = acquirePreparedStatement(sql); try { throwIfStatementForbidden(statement); bindArguments(statement, bindArgs); applyBlockGuardPolicy(statement); attachCancellationSignal(cancellationSignal); try { return nativeExecuteForString(mConnectionPtr, statement.mStatementPtr); } finally { detachCancellationSignal(cancellationSignal); } } finally { releasePreparedStatement(statement); } } catch (RuntimeException ex) { mRecentOperations.failOperation(cookie, ex); throw ex; } finally { mRecentOperations.endOperation(cookie); } }
Executes a statement that returns a single BLOB result as a file descriptor to a shared memory region.
Params:
  • sql – The SQL statement to execute.
  • bindArgs – The arguments to bind, or null if none.
  • cancellationSignal – A signal to cancel the operation in progress, or null if none.
Throws:
Returns:The file descriptor for a shared memory region that contains the value of the first column in the first row of the result set as a BLOB, or null if none.
/** * Executes a statement that returns a single BLOB result as a * file descriptor to a shared memory region. * * @param sql The SQL statement to execute. * @param bindArgs The arguments to bind, or null if none. * @param cancellationSignal A signal to cancel the operation in progress, or null if none. * @return The file descriptor for a shared memory region that contains * the value of the first column in the first row of the result set as a BLOB, * or null if none. * * @throws SQLiteException if an error occurs, such as a syntax error * or invalid number of bind arguments. * @throws OperationCanceledException if the operation was canceled. */
public ParcelFileDescriptor executeForBlobFileDescriptor(String sql, Object[] bindArgs, CancellationSignal cancellationSignal) { if (sql == null) { throw new IllegalArgumentException("sql must not be null."); } final int cookie = mRecentOperations.beginOperation("executeForBlobFileDescriptor", sql, bindArgs); try { final PreparedStatement statement = acquirePreparedStatement(sql); try { throwIfStatementForbidden(statement); bindArguments(statement, bindArgs); applyBlockGuardPolicy(statement); attachCancellationSignal(cancellationSignal); try { int fd = nativeExecuteForBlobFileDescriptor( mConnectionPtr, statement.mStatementPtr); return fd >= 0 ? ParcelFileDescriptor.adoptFd(fd) : null; } finally { detachCancellationSignal(cancellationSignal); } } finally { releasePreparedStatement(statement); } } catch (RuntimeException ex) { mRecentOperations.failOperation(cookie, ex); throw ex; } finally { mRecentOperations.endOperation(cookie); } }
Executes a statement that returns a count of the number of rows that were changed. Use for UPDATE or DELETE SQL statements.
Params:
  • sql – The SQL statement to execute.
  • bindArgs – The arguments to bind, or null if none.
  • cancellationSignal – A signal to cancel the operation in progress, or null if none.
Throws:
Returns:The number of rows that were changed.
/** * Executes a statement that returns a count of the number of rows * that were changed. Use for UPDATE or DELETE SQL statements. * * @param sql The SQL statement to execute. * @param bindArgs The arguments to bind, or null if none. * @param cancellationSignal A signal to cancel the operation in progress, or null if none. * @return The number of rows that were changed. * * @throws SQLiteException if an error occurs, such as a syntax error * or invalid number of bind arguments. * @throws OperationCanceledException if the operation was canceled. */
public int executeForChangedRowCount(String sql, Object[] bindArgs, CancellationSignal cancellationSignal) { if (sql == null) { throw new IllegalArgumentException("sql must not be null."); } int changedRows = 0; final int cookie = mRecentOperations.beginOperation("executeForChangedRowCount", sql, bindArgs); try { final PreparedStatement statement = acquirePreparedStatement(sql); try { throwIfStatementForbidden(statement); bindArguments(statement, bindArgs); applyBlockGuardPolicy(statement); attachCancellationSignal(cancellationSignal); try { changedRows = nativeExecuteForChangedRowCount( mConnectionPtr, statement.mStatementPtr); return changedRows; } finally { detachCancellationSignal(cancellationSignal); } } finally { releasePreparedStatement(statement); } } catch (RuntimeException ex) { mRecentOperations.failOperation(cookie, ex); throw ex; } finally { if (mRecentOperations.endOperationDeferLog(cookie)) { mRecentOperations.logOperation(cookie, "changedRows=" + changedRows); } } }
Executes a statement that returns the row id of the last row inserted by the statement. Use for INSERT SQL statements.
Params:
  • sql – The SQL statement to execute.
  • bindArgs – The arguments to bind, or null if none.
  • cancellationSignal – A signal to cancel the operation in progress, or null if none.
Throws:
Returns:The row id of the last row that was inserted, or 0 if none.
/** * Executes a statement that returns the row id of the last row inserted * by the statement. Use for INSERT SQL statements. * * @param sql The SQL statement to execute. * @param bindArgs The arguments to bind, or null if none. * @param cancellationSignal A signal to cancel the operation in progress, or null if none. * @return The row id of the last row that was inserted, or 0 if none. * * @throws SQLiteException if an error occurs, such as a syntax error * or invalid number of bind arguments. * @throws OperationCanceledException if the operation was canceled. */
public long executeForLastInsertedRowId(String sql, Object[] bindArgs, CancellationSignal cancellationSignal) { if (sql == null) { throw new IllegalArgumentException("sql must not be null."); } final int cookie = mRecentOperations.beginOperation("executeForLastInsertedRowId", sql, bindArgs); try { final PreparedStatement statement = acquirePreparedStatement(sql); try { throwIfStatementForbidden(statement); bindArguments(statement, bindArgs); applyBlockGuardPolicy(statement); attachCancellationSignal(cancellationSignal); try { return nativeExecuteForLastInsertedRowId( mConnectionPtr, statement.mStatementPtr); } finally { detachCancellationSignal(cancellationSignal); } } finally { releasePreparedStatement(statement); } } catch (RuntimeException ex) { mRecentOperations.failOperation(cookie, ex); throw ex; } finally { mRecentOperations.endOperation(cookie); } }
Executes a statement and populates the specified CursorWindow with a range of results. Returns the number of rows that were counted during query execution.
Params:
  • sql – The SQL statement to execute.
  • bindArgs – The arguments to bind, or null if none.
  • window – The cursor window to clear and fill.
  • startPos – The start position for filling the window.
  • requiredPos – The position of a row that MUST be in the window. If it won't fit, then the query should discard part of what it filled so that it does. Must be greater than or equal to startPos.
  • countAllRows – True to count all rows that the query would return regagless of whether they fit in the window.
  • cancellationSignal – A signal to cancel the operation in progress, or null if none.
Throws:
Returns:The number of rows that were counted during query execution. Might not be all rows in the result set unless countAllRows is true.
/** * Executes a statement and populates the specified {@link CursorWindow} * with a range of results. Returns the number of rows that were counted * during query execution. * * @param sql The SQL statement to execute. * @param bindArgs The arguments to bind, or null if none. * @param window The cursor window to clear and fill. * @param startPos The start position for filling the window. * @param requiredPos The position of a row that MUST be in the window. * If it won't fit, then the query should discard part of what it filled * so that it does. Must be greater than or equal to <code>startPos</code>. * @param countAllRows True to count all rows that the query would return * regagless of whether they fit in the window. * @param cancellationSignal A signal to cancel the operation in progress, or null if none. * @return The number of rows that were counted during query execution. Might * not be all rows in the result set unless <code>countAllRows</code> is true. * * @throws SQLiteException if an error occurs, such as a syntax error * or invalid number of bind arguments. * @throws OperationCanceledException if the operation was canceled. */
public int executeForCursorWindow(String sql, Object[] bindArgs, CursorWindow window, int startPos, int requiredPos, boolean countAllRows, CancellationSignal cancellationSignal) { if (sql == null) { throw new IllegalArgumentException("sql must not be null."); } if (window == null) { throw new IllegalArgumentException("window must not be null."); } window.acquireReference(); try { int actualPos = -1; int countedRows = -1; int filledRows = -1; final int cookie = mRecentOperations.beginOperation("executeForCursorWindow", sql, bindArgs); try { final PreparedStatement statement = acquirePreparedStatement(sql); try { throwIfStatementForbidden(statement); bindArguments(statement, bindArgs); applyBlockGuardPolicy(statement); attachCancellationSignal(cancellationSignal); try { final long result = nativeExecuteForCursorWindow( mConnectionPtr, statement.mStatementPtr, window.mWindowPtr, startPos, requiredPos, countAllRows); actualPos = (int)(result >> 32); countedRows = (int)result; filledRows = window.getNumRows(); window.setStartPosition(actualPos); return countedRows; } finally { detachCancellationSignal(cancellationSignal); } } finally { releasePreparedStatement(statement); } } catch (RuntimeException ex) { mRecentOperations.failOperation(cookie, ex); throw ex; } finally { if (mRecentOperations.endOperationDeferLog(cookie)) { mRecentOperations.logOperation(cookie, "window='" + window + "', startPos=" + startPos + ", actualPos=" + actualPos + ", filledRows=" + filledRows + ", countedRows=" + countedRows); } } } finally { window.releaseReference(); } } private PreparedStatement acquirePreparedStatement(String sql) { PreparedStatement statement = mPreparedStatementCache.get(sql); boolean skipCache = false; if (statement != null) { if (!statement.mInUse) { return statement; } // The statement is already in the cache but is in use (this statement appears // to be not only re-entrant but recursive!). So prepare a new copy of the // statement but do not cache it. skipCache = true; } final long statementPtr = nativePrepareStatement(mConnectionPtr, sql); try { final int numParameters = nativeGetParameterCount(mConnectionPtr, statementPtr); final int type = DatabaseUtils.getSqlStatementType(sql); final boolean readOnly = nativeIsReadOnly(mConnectionPtr, statementPtr); statement = obtainPreparedStatement(sql, statementPtr, numParameters, type, readOnly); if (!skipCache && isCacheable(type)) { mPreparedStatementCache.put(sql, statement); statement.mInCache = true; } } catch (RuntimeException ex) { // Finalize the statement if an exception occurred and we did not add // it to the cache. If it is already in the cache, then leave it there. if (statement == null || !statement.mInCache) { nativeFinalizeStatement(mConnectionPtr, statementPtr); } throw ex; } statement.mInUse = true; return statement; } private void releasePreparedStatement(PreparedStatement statement) { statement.mInUse = false; if (statement.mInCache) { try { nativeResetStatementAndClearBindings(mConnectionPtr, statement.mStatementPtr); } catch (SQLiteException ex) { // The statement could not be reset due to an error. Remove it from the cache. // When remove() is called, the cache will invoke its entryRemoved() callback, // which will in turn call finalizePreparedStatement() to finalize and // recycle the statement. if (DEBUG) { Log.d(TAG, "Could not reset prepared statement due to an exception. " + "Removing it from the cache. SQL: " + trimSqlForDisplay(statement.mSql), ex); } mPreparedStatementCache.remove(statement.mSql); } } else { finalizePreparedStatement(statement); } } private void finalizePreparedStatement(PreparedStatement statement) { nativeFinalizeStatement(mConnectionPtr, statement.mStatementPtr); recyclePreparedStatement(statement); } private void attachCancellationSignal(CancellationSignal cancellationSignal) { if (cancellationSignal != null) { cancellationSignal.throwIfCanceled(); mCancellationSignalAttachCount += 1; if (mCancellationSignalAttachCount == 1) { // Reset cancellation flag before executing the statement. nativeResetCancel(mConnectionPtr, true /*cancelable*/); // After this point, onCancel() may be called concurrently. cancellationSignal.setOnCancelListener(this); } } } private void detachCancellationSignal(CancellationSignal cancellationSignal) { if (cancellationSignal != null) { assert mCancellationSignalAttachCount > 0; mCancellationSignalAttachCount -= 1; if (mCancellationSignalAttachCount == 0) { // After this point, onCancel() cannot be called concurrently. cancellationSignal.setOnCancelListener(null); // Reset cancellation flag after executing the statement. nativeResetCancel(mConnectionPtr, false /*cancelable*/); } } } // CancellationSignal.OnCancelListener callback. // This method may be called on a different thread than the executing statement. // However, it will only be called between calls to attachCancellationSignal and // detachCancellationSignal, while a statement is executing. We can safely assume // that the SQLite connection is still alive. @Override public void onCancel() { nativeCancel(mConnectionPtr); } private void bindArguments(PreparedStatement statement, Object[] bindArgs) { final int count = bindArgs != null ? bindArgs.length : 0; if (count != statement.mNumParameters) { throw new SQLiteBindOrColumnIndexOutOfRangeException( "Expected " + statement.mNumParameters + " bind arguments but " + count + " were provided."); } if (count == 0) { return; } final long statementPtr = statement.mStatementPtr; for (int i = 0; i < count; i++) { final Object arg = bindArgs[i]; switch (DatabaseUtils.getTypeOfObject(arg)) { case Cursor.FIELD_TYPE_NULL: nativeBindNull(mConnectionPtr, statementPtr, i + 1); break; case Cursor.FIELD_TYPE_INTEGER: nativeBindLong(mConnectionPtr, statementPtr, i + 1, ((Number)arg).longValue()); break; case Cursor.FIELD_TYPE_FLOAT: nativeBindDouble(mConnectionPtr, statementPtr, i + 1, ((Number)arg).doubleValue()); break; case Cursor.FIELD_TYPE_BLOB: nativeBindBlob(mConnectionPtr, statementPtr, i + 1, (byte[])arg); break; case Cursor.FIELD_TYPE_STRING: default: if (arg instanceof Boolean) { // Provide compatibility with legacy applications which may pass // Boolean values in bind args. nativeBindLong(mConnectionPtr, statementPtr, i + 1, ((Boolean)arg).booleanValue() ? 1 : 0); } else { nativeBindString(mConnectionPtr, statementPtr, i + 1, arg.toString()); } break; } } } private void throwIfStatementForbidden(PreparedStatement statement) { if (mOnlyAllowReadOnlyOperations && !statement.mReadOnly) { throw new SQLiteException("Cannot execute this statement because it " + "might modify the database but the connection is read-only."); } } private static boolean isCacheable(int statementType) { if (statementType == DatabaseUtils.STATEMENT_UPDATE || statementType == DatabaseUtils.STATEMENT_SELECT) { return true; } return false; } private void applyBlockGuardPolicy(PreparedStatement statement) { if (!mConfiguration.isInMemoryDb()) { if (statement.mReadOnly) { BlockGuard.getThreadPolicy().onReadFromDisk(); } else { BlockGuard.getThreadPolicy().onWriteToDisk(); } } }
Dumps debugging information about this connection.
Params:
  • printer – The printer to receive the dump, not null.
  • verbose – True to dump more verbose information.
/** * Dumps debugging information about this connection. * * @param printer The printer to receive the dump, not null. * @param verbose True to dump more verbose information. */
public void dump(Printer printer, boolean verbose) { dumpUnsafe(printer, verbose); }
Dumps debugging information about this connection, in the case where the caller might not actually own the connection. This function is written so that it may be called by a thread that does not own the connection. We need to be very careful because the connection state is not synchronized. At worst, the method may return stale or slightly wrong data, however it should not crash. This is ok as it is only used for diagnostic purposes.
Params:
  • printer – The printer to receive the dump, not null.
  • verbose – True to dump more verbose information.
/** * Dumps debugging information about this connection, in the case where the * caller might not actually own the connection. * * This function is written so that it may be called by a thread that does not * own the connection. We need to be very careful because the connection state is * not synchronized. * * At worst, the method may return stale or slightly wrong data, however * it should not crash. This is ok as it is only used for diagnostic purposes. * * @param printer The printer to receive the dump, not null. * @param verbose True to dump more verbose information. */
void dumpUnsafe(Printer printer, boolean verbose) { printer.println("Connection #" + mConnectionId + ":"); if (verbose) { printer.println(" connectionPtr: 0x" + Long.toHexString(mConnectionPtr)); } printer.println(" isPrimaryConnection: " + mIsPrimaryConnection); printer.println(" onlyAllowReadOnlyOperations: " + mOnlyAllowReadOnlyOperations); mRecentOperations.dump(printer, verbose); if (verbose) { mPreparedStatementCache.dump(printer); } }
Describes the currently executing operation, in the case where the caller might not actually own the connection. This function is written so that it may be called by a thread that does not own the connection. We need to be very careful because the connection state is not synchronized. At worst, the method may return stale or slightly wrong data, however it should not crash. This is ok as it is only used for diagnostic purposes.
Returns:A description of the current operation including how long it has been running, or null if none.
/** * Describes the currently executing operation, in the case where the * caller might not actually own the connection. * * This function is written so that it may be called by a thread that does not * own the connection. We need to be very careful because the connection state is * not synchronized. * * At worst, the method may return stale or slightly wrong data, however * it should not crash. This is ok as it is only used for diagnostic purposes. * * @return A description of the current operation including how long it has been running, * or null if none. */
String describeCurrentOperationUnsafe() { return mRecentOperations.describeCurrentOperation(); }
Collects statistics about database connection memory usage.
Params:
  • dbStatsList – The list to populate.
/** * Collects statistics about database connection memory usage. * * @param dbStatsList The list to populate. */
void collectDbStats(ArrayList<DbStats> dbStatsList) { // Get information about the main database. int lookaside = nativeGetDbLookaside(mConnectionPtr); long pageCount = 0; long pageSize = 0; try { pageCount = executeForLong("PRAGMA page_count;", null, null); pageSize = executeForLong("PRAGMA page_size;", null, null); } catch (SQLiteException ex) { // Ignore. } dbStatsList.add(getMainDbStatsUnsafe(lookaside, pageCount, pageSize)); // Get information about attached databases. // We ignore the first row in the database list because it corresponds to // the main database which we have already described. CursorWindow window = new CursorWindow("collectDbStats"); try { executeForCursorWindow("PRAGMA database_list;", null, window, 0, 0, false, null); for (int i = 1; i < window.getNumRows(); i++) { String name = window.getString(i, 1); String path = window.getString(i, 2); pageCount = 0; pageSize = 0; try { pageCount = executeForLong("PRAGMA " + name + ".page_count;", null, null); pageSize = executeForLong("PRAGMA " + name + ".page_size;", null, null); } catch (SQLiteException ex) { // Ignore. } String label = " (attached) " + name; if (!path.isEmpty()) { label += ": " + path; } dbStatsList.add(new DbStats(label, pageCount, pageSize, 0, 0, 0, 0)); } } catch (SQLiteException ex) { // Ignore. } finally { window.close(); } }
Collects statistics about database connection memory usage, in the case where the caller might not actually own the connection.
Returns:The statistics object, never null.
/** * Collects statistics about database connection memory usage, in the case where the * caller might not actually own the connection. * * @return The statistics object, never null. */
void collectDbStatsUnsafe(ArrayList<DbStats> dbStatsList) { dbStatsList.add(getMainDbStatsUnsafe(0, 0, 0)); } private DbStats getMainDbStatsUnsafe(int lookaside, long pageCount, long pageSize) { // The prepared statement cache is thread-safe so we can access its statistics // even if we do not own the database connection. String label = mConfiguration.path; if (!mIsPrimaryConnection) { label += " (" + mConnectionId + ")"; } return new DbStats(label, pageCount, pageSize, lookaside, mPreparedStatementCache.hitCount(), mPreparedStatementCache.missCount(), mPreparedStatementCache.size()); } @Override public String toString() { return "SQLiteConnection: " + mConfiguration.path + " (" + mConnectionId + ")"; } private PreparedStatement obtainPreparedStatement(String sql, long statementPtr, int numParameters, int type, boolean readOnly) { PreparedStatement statement = mPreparedStatementPool; if (statement != null) { mPreparedStatementPool = statement.mPoolNext; statement.mPoolNext = null; statement.mInCache = false; } else { statement = new PreparedStatement(); } statement.mSql = sql; statement.mStatementPtr = statementPtr; statement.mNumParameters = numParameters; statement.mType = type; statement.mReadOnly = readOnly; return statement; } private void recyclePreparedStatement(PreparedStatement statement) { statement.mSql = null; statement.mPoolNext = mPreparedStatementPool; mPreparedStatementPool = statement; } private static String trimSqlForDisplay(String sql) { // Note: Creating and caching a regular expression is expensive at preload-time // and stops compile-time initialization. This pattern is only used when // dumping the connection, which is a rare (mainly error) case. So: // DO NOT CACHE. return sql.replaceAll("[\\s]*\\n+[\\s]*", " "); }
Holder type for a prepared statement. Although this object holds a pointer to a native statement object, it does not have a finalizer. This is deliberate. The SQLiteConnection owns the statement object and will take care of freeing it when needed. In particular, closing the connection requires a guarantee of deterministic resource disposal because all native statement objects must be freed before the native database object can be closed. So no finalizers here.
/** * Holder type for a prepared statement. * * Although this object holds a pointer to a native statement object, it * does not have a finalizer. This is deliberate. The {@link SQLiteConnection} * owns the statement object and will take care of freeing it when needed. * In particular, closing the connection requires a guarantee of deterministic * resource disposal because all native statement objects must be freed before * the native database object can be closed. So no finalizers here. */
private static final class PreparedStatement { // Next item in pool. public PreparedStatement mPoolNext; // The SQL from which the statement was prepared. public String mSql; // The native sqlite3_stmt object pointer. // Lifetime is managed explicitly by the connection. public long mStatementPtr; // The number of parameters that the prepared statement has. public int mNumParameters; // The statement type. public int mType; // True if the statement is read-only. public boolean mReadOnly; // True if the statement is in the cache. public boolean mInCache; // True if the statement is in use (currently executing). // We need this flag because due to the use of custom functions in triggers, it's // possible for SQLite calls to be re-entrant. Consequently we need to prevent // in use statements from being finalized until they are no longer in use. public boolean mInUse; } private final class PreparedStatementCache extends LruCache<String, PreparedStatement> { public PreparedStatementCache(int size) { super(size); } @Override protected void entryRemoved(boolean evicted, String key, PreparedStatement oldValue, PreparedStatement newValue) { oldValue.mInCache = false; if (!oldValue.mInUse) { finalizePreparedStatement(oldValue); } } public void dump(Printer printer) { printer.println(" Prepared statement cache:"); Map<String, PreparedStatement> cache = snapshot(); if (!cache.isEmpty()) { int i = 0; for (Map.Entry<String, PreparedStatement> entry : cache.entrySet()) { PreparedStatement statement = entry.getValue(); if (statement.mInCache) { // might be false due to a race with entryRemoved String sql = entry.getKey(); printer.println(" " + i + ": statementPtr=0x" + Long.toHexString(statement.mStatementPtr) + ", numParameters=" + statement.mNumParameters + ", type=" + statement.mType + ", readOnly=" + statement.mReadOnly + ", sql=\"" + trimSqlForDisplay(sql) + "\""); } i += 1; } } else { printer.println(" <none>"); } } } private static final class OperationLog { private static final int MAX_RECENT_OPERATIONS = 20; private static final int COOKIE_GENERATION_SHIFT = 8; private static final int COOKIE_INDEX_MASK = 0xff; private final Operation[] mOperations = new Operation[MAX_RECENT_OPERATIONS]; private int mIndex; private int mGeneration; private final SQLiteConnectionPool mPool; OperationLog(SQLiteConnectionPool pool) { mPool = pool; } public int beginOperation(String kind, String sql, Object[] bindArgs) { synchronized (mOperations) { final int index = (mIndex + 1) % MAX_RECENT_OPERATIONS; Operation operation = mOperations[index]; if (operation == null) { operation = new Operation(); mOperations[index] = operation; } else { operation.mFinished = false; operation.mException = null; if (operation.mBindArgs != null) { operation.mBindArgs.clear(); } } operation.mStartWallTime = System.currentTimeMillis(); operation.mStartTime = SystemClock.uptimeMillis(); operation.mKind = kind; operation.mSql = sql; if (bindArgs != null) { if (operation.mBindArgs == null) { operation.mBindArgs = new ArrayList<Object>(); } else { operation.mBindArgs.clear(); } for (int i = 0; i < bindArgs.length; i++) { final Object arg = bindArgs[i]; if (arg != null && arg instanceof byte[]) { // Don't hold onto the real byte array longer than necessary. operation.mBindArgs.add(EMPTY_BYTE_ARRAY); } else { operation.mBindArgs.add(arg); } } } operation.mCookie = newOperationCookieLocked(index); if (Trace.isTagEnabled(Trace.TRACE_TAG_DATABASE)) { Trace.asyncTraceBegin(Trace.TRACE_TAG_DATABASE, operation.getTraceMethodName(), operation.mCookie); } mIndex = index; return operation.mCookie; } } public void failOperation(int cookie, Exception ex) { synchronized (mOperations) { final Operation operation = getOperationLocked(cookie); if (operation != null) { operation.mException = ex; } } } public void endOperation(int cookie) { synchronized (mOperations) { if (endOperationDeferLogLocked(cookie)) { logOperationLocked(cookie, null); } } } public boolean endOperationDeferLog(int cookie) { synchronized (mOperations) { return endOperationDeferLogLocked(cookie); } } public void logOperation(int cookie, String detail) { synchronized (mOperations) { logOperationLocked(cookie, detail); } } private boolean endOperationDeferLogLocked(int cookie) { final Operation operation = getOperationLocked(cookie); if (operation != null) { if (Trace.isTagEnabled(Trace.TRACE_TAG_DATABASE)) { Trace.asyncTraceEnd(Trace.TRACE_TAG_DATABASE, operation.getTraceMethodName(), operation.mCookie); } operation.mEndTime = SystemClock.uptimeMillis(); operation.mFinished = true; final long execTime = operation.mEndTime - operation.mStartTime; mPool.onStatementExecuted(execTime); return SQLiteDebug.DEBUG_LOG_SLOW_QUERIES && SQLiteDebug.shouldLogSlowQuery( execTime); } return false; } private void logOperationLocked(int cookie, String detail) { final Operation operation = getOperationLocked(cookie); StringBuilder msg = new StringBuilder(); operation.describe(msg, false); if (detail != null) { msg.append(", ").append(detail); } Log.d(TAG, msg.toString()); } private int newOperationCookieLocked(int index) { final int generation = mGeneration++; return generation << COOKIE_GENERATION_SHIFT | index; } private Operation getOperationLocked(int cookie) { final int index = cookie & COOKIE_INDEX_MASK; final Operation operation = mOperations[index]; return operation.mCookie == cookie ? operation : null; } public String describeCurrentOperation() { synchronized (mOperations) { final Operation operation = mOperations[mIndex]; if (operation != null && !operation.mFinished) { StringBuilder msg = new StringBuilder(); operation.describe(msg, false); return msg.toString(); } return null; } } public void dump(Printer printer, boolean verbose) { synchronized (mOperations) { printer.println(" Most recently executed operations:"); int index = mIndex; Operation operation = mOperations[index]; if (operation != null) { // Note: SimpleDateFormat is not thread-safe, cannot be compile-time created, // and is relatively expensive to create during preloading. This method is only // used when dumping a connection, which is a rare (mainly error) case. SimpleDateFormat opDF = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS"); int n = 0; do { StringBuilder msg = new StringBuilder(); msg.append(" ").append(n).append(": ["); String formattedStartTime = opDF.format(new Date(operation.mStartWallTime)); msg.append(formattedStartTime); msg.append("] "); operation.describe(msg, verbose); printer.println(msg.toString()); if (index > 0) { index -= 1; } else { index = MAX_RECENT_OPERATIONS - 1; } n += 1; operation = mOperations[index]; } while (operation != null && n < MAX_RECENT_OPERATIONS); } else { printer.println(" <none>"); } } } } private static final class Operation { // Trim all SQL statements to 256 characters inside the trace marker. // This limit gives plenty of context while leaving space for other // entries in the trace buffer (and ensures atrace doesn't truncate the // marker for us, potentially losing metadata in the process). private static final int MAX_TRACE_METHOD_NAME_LEN = 256; public long mStartWallTime; // in System.currentTimeMillis() public long mStartTime; // in SystemClock.uptimeMillis(); public long mEndTime; // in SystemClock.uptimeMillis(); public String mKind; public String mSql; public ArrayList<Object> mBindArgs; public boolean mFinished; public Exception mException; public int mCookie; public void describe(StringBuilder msg, boolean verbose) { msg.append(mKind); if (mFinished) { msg.append(" took ").append(mEndTime - mStartTime).append("ms"); } else { msg.append(" started ").append(System.currentTimeMillis() - mStartWallTime) .append("ms ago"); } msg.append(" - ").append(getStatus()); if (mSql != null) { msg.append(", sql=\"").append(trimSqlForDisplay(mSql)).append("\""); } if (verbose && mBindArgs != null && mBindArgs.size() != 0) { msg.append(", bindArgs=["); final int count = mBindArgs.size(); for (int i = 0; i < count; i++) { final Object arg = mBindArgs.get(i); if (i != 0) { msg.append(", "); } if (arg == null) { msg.append("null"); } else if (arg instanceof byte[]) { msg.append("<byte[]>"); } else if (arg instanceof String) { msg.append("\"").append((String)arg).append("\""); } else { msg.append(arg); } } msg.append("]"); } if (mException != null) { msg.append(", exception=\"").append(mException.getMessage()).append("\""); } } private String getStatus() { if (!mFinished) { return "running"; } return mException != null ? "failed" : "succeeded"; } private String getTraceMethodName() { String methodName = mKind + " " + mSql; if (methodName.length() > MAX_TRACE_METHOD_NAME_LEN) return methodName.substring(0, MAX_TRACE_METHOD_NAME_LEN); return methodName; } } }