/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Id: OneStepIterator.java 469314 2006-10-30 23:31:59Z minchau $
*/
package org.apache.xpath.axes;
import org.apache.xml.dtm.DTM;
import org.apache.xml.dtm.DTMAxisIterator;
import org.apache.xml.dtm.DTMFilter;
import org.apache.xml.dtm.DTMIterator;
import org.apache.xpath.Expression;
import org.apache.xpath.XPathContext;
import org.apache.xpath.compiler.Compiler;
import org.apache.xpath.compiler.OpMap;
This class implements a general iterator for
those LocationSteps with only one step, and perhaps a predicate.
See Also: - LocPathIterator.LocPathIterator
@xsl.usage advanced
/**
* This class implements a general iterator for
* those LocationSteps with only one step, and perhaps a predicate.
* @see org.apache.xpath.axes#LocPathIterator
* @xsl.usage advanced
*/
public class OneStepIterator extends ChildTestIterator
{
static final long serialVersionUID = 4623710779664998283L;
The traversal axis from where the nodes will be filtered. /** The traversal axis from where the nodes will be filtered. */
protected int m_axis = -1;
The DTM inner traversal class, that corresponds to the super axis. /** The DTM inner traversal class, that corresponds to the super axis. */
protected DTMAxisIterator m_iterator;
Create a OneStepIterator object.
Params: - compiler – A reference to the Compiler that contains the op map.
- opPos – The position within the op map, which contains the
location path expression for this itterator.
Throws:
/**
* Create a OneStepIterator object.
*
* @param compiler A reference to the Compiler that contains the op map.
* @param opPos The position within the op map, which contains the
* location path expression for this itterator.
*
* @throws javax.xml.transform.TransformerException
*/
OneStepIterator(Compiler compiler, int opPos, int analysis)
throws javax.xml.transform.TransformerException
{
super(compiler, opPos, analysis);
int firstStepPos = OpMap.getFirstChildPos(opPos);
m_axis = WalkerFactory.getAxisFromStep(compiler, firstStepPos);
}
Create a OneStepIterator object.
Params: - iterator – The DTM iterator which this iterator will use.
- axis – One of Axis.Child, etc., or -1 if the axis is unknown.
Throws:
/**
* Create a OneStepIterator object.
*
* @param iterator The DTM iterator which this iterator will use.
* @param axis One of Axis.Child, etc., or -1 if the axis is unknown.
*
* @throws javax.xml.transform.TransformerException
*/
public OneStepIterator(DTMAxisIterator iterator, int axis)
throws javax.xml.transform.TransformerException
{
super(null);
m_iterator = iterator;
m_axis = axis;
int whatToShow = DTMFilter.SHOW_ALL;
initNodeTest(whatToShow);
}
Initialize the context values for this expression
after it is cloned.
Params: - context – The XPath runtime context for this
transformation.
/**
* Initialize the context values for this expression
* after it is cloned.
*
* @param context The XPath runtime context for this
* transformation.
*/
public void setRoot(int context, Object environment)
{
super.setRoot(context, environment);
if(m_axis > -1)
m_iterator = m_cdtm.getAxisIterator(m_axis);
m_iterator.setStartNode(m_context);
}
Detaches the iterator from the set which it iterated over, releasing
any computational resources and placing the iterator in the INVALID
state. Afterdetach
has been invoked, calls to
nextNode
orpreviousNode
will raise the
exception INVALID_STATE_ERR.
/**
* Detaches the iterator from the set which it iterated over, releasing
* any computational resources and placing the iterator in the INVALID
* state. After<code>detach</code> has been invoked, calls to
* <code>nextNode</code> or<code>previousNode</code> will raise the
* exception INVALID_STATE_ERR.
*/
public void detach()
{
if(m_allowDetach)
{
if(m_axis > -1)
m_iterator = null;
// Always call the superclass detach last!
super.detach();
}
}
Get the next node via getFirstAttribute && getNextAttribute.
/**
* Get the next node via getFirstAttribute && getNextAttribute.
*/
protected int getNextNode()
{
return m_lastFetched = m_iterator.next();
}
Get a cloned iterator.
Throws: Returns: A new iterator that can be used without mutating this one.
/**
* Get a cloned iterator.
*
* @return A new iterator that can be used without mutating this one.
*
* @throws CloneNotSupportedException
*/
public Object clone() throws CloneNotSupportedException
{
// Do not access the location path itterator during this operation!
OneStepIterator clone = (OneStepIterator) super.clone();
if(m_iterator != null)
{
clone.m_iterator = m_iterator.cloneIterator();
}
return clone;
}
Get a cloned Iterator that is reset to the beginning
of the query.
@return A cloned NodeIterator set of the start of the query.
@throws CloneNotSupportedException
/**
* Get a cloned Iterator that is reset to the beginning
* of the query.
*
* @return A cloned NodeIterator set of the start of the query.
*
* @throws CloneNotSupportedException
*/
public DTMIterator cloneWithReset() throws CloneNotSupportedException
{
OneStepIterator clone = (OneStepIterator) super.cloneWithReset();
clone.m_iterator = m_iterator;
return clone;
}
Tells if this is a reverse axes. Overrides AxesWalker#isReverseAxes.
Returns: true for this class.
/**
* Tells if this is a reverse axes. Overrides AxesWalker#isReverseAxes.
*
* @return true for this class.
*/
public boolean isReverseAxes()
{
return m_iterator.isReverse();
}
Get the current sub-context position. In order to do the
reverse axes count, for the moment this re-searches the axes
up to the predicate. An optimization on this is to cache
the nodes searched, but, for the moment, this case is probably
rare enough that the added complexity isn't worth it.
Params: - predicateIndex – The predicate index of the proximity position.
Returns: The pridicate index, or -1.
/**
* Get the current sub-context position. In order to do the
* reverse axes count, for the moment this re-searches the axes
* up to the predicate. An optimization on this is to cache
* the nodes searched, but, for the moment, this case is probably
* rare enough that the added complexity isn't worth it.
*
* @param predicateIndex The predicate index of the proximity position.
*
* @return The pridicate index, or -1.
*/
protected int getProximityPosition(int predicateIndex)
{
if(!isReverseAxes())
return super.getProximityPosition(predicateIndex);
// A negative predicate index seems to occur with
// (preceding-sibling::*|following-sibling::*)/ancestor::*[position()]/*[position()]
// -sb
if(predicateIndex < 0)
return -1;
if (m_proximityPositions[predicateIndex] <= 0)
{
XPathContext xctxt = getXPathContext();
try
{
OneStepIterator clone = (OneStepIterator) this.clone();
int root = getRoot();
xctxt.pushCurrentNode(root);
clone.setRoot(root, xctxt);
// clone.setPredicateCount(predicateIndex);
clone.m_predCount = predicateIndex;
// Count 'em all
int count = 1;
int next;
while (DTM.NULL != (next = clone.nextNode()))
{
count++;
}
m_proximityPositions[predicateIndex] += count;
}
catch (CloneNotSupportedException cnse)
{
// can't happen
}
finally
{
xctxt.popCurrentNode();
}
}
return m_proximityPositions[predicateIndex];
}
The number of nodes in the list. The range of valid child node indices
is 0 to length-1
inclusive.
Returns: The number of nodes in the list, always greater or equal to zero.
/**
* The number of nodes in the list. The range of valid child node indices
* is 0 to <code>length-1</code> inclusive.
*
* @return The number of nodes in the list, always greater or equal to zero.
*/
public int getLength()
{
if(!isReverseAxes())
return super.getLength();
// Tell if this is being called from within a predicate.
boolean isPredicateTest = (this == m_execContext.getSubContextList());
// And get how many total predicates are part of this step.
int predCount = getPredicateCount();
// If we have already calculated the length, and the current predicate
// is the first predicate, then return the length. We don't cache
// the anything but the length of the list to the first predicate.
if (-1 != m_length && isPredicateTest && m_predicateIndex < 1)
return m_length;
int count = 0;
XPathContext xctxt = getXPathContext();
try
{
OneStepIterator clone = (OneStepIterator) this.cloneWithReset();
int root = getRoot();
xctxt.pushCurrentNode(root);
clone.setRoot(root, xctxt);
clone.m_predCount = m_predicateIndex;
int next;
while (DTM.NULL != (next = clone.nextNode()))
{
count++;
}
}
catch (CloneNotSupportedException cnse)
{
// can't happen
}
finally
{
xctxt.popCurrentNode();
}
if (isPredicateTest && m_predicateIndex < 1)
m_length = count;
return count;
}
Count backwards one proximity position.
Params: - i – The predicate index.
/**
* Count backwards one proximity position.
*
* @param i The predicate index.
*/
protected void countProximityPosition(int i)
{
if(!isReverseAxes())
super.countProximityPosition(i);
else if (i < m_proximityPositions.length)
m_proximityPositions[i]--;
}
Reset the iterator.
/**
* Reset the iterator.
*/
public void reset()
{
super.reset();
if(null != m_iterator)
m_iterator.reset();
}
Returns the axis being iterated, if it is known.
Returns: Axis.CHILD, etc., or -1 if the axis is not known or is of multiple
types.
/**
* Returns the axis being iterated, if it is known.
*
* @return Axis.CHILD, etc., or -1 if the axis is not known or is of multiple
* types.
*/
public int getAxis()
{
return m_axis;
}
See Also: - deepEquals.deepEquals(Expression)
/**
* @see Expression#deepEquals(Expression)
*/
public boolean deepEquals(Expression expr)
{
if(!super.deepEquals(expr))
return false;
if(m_axis != ((OneStepIterator)expr).m_axis)
return false;
return true;
}
}