/*
 * Copyright 2013, Google Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google Inc. nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

package org.jf.dexlib2.analysis;

import com.google.common.base.Function;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.Lists;
import org.jf.dexlib2.AccessFlags;
import org.jf.dexlib2.Opcode;
import org.jf.dexlib2.base.reference.BaseMethodReference;
import org.jf.dexlib2.iface.*;
import org.jf.dexlib2.iface.instruction.*;
import org.jf.dexlib2.iface.instruction.formats.*;
import org.jf.dexlib2.iface.reference.FieldReference;
import org.jf.dexlib2.iface.reference.MethodReference;
import org.jf.dexlib2.iface.reference.Reference;
import org.jf.dexlib2.iface.reference.TypeReference;
import org.jf.dexlib2.immutable.instruction.*;
import org.jf.dexlib2.immutable.reference.ImmutableFieldReference;
import org.jf.dexlib2.immutable.reference.ImmutableMethodReference;
import org.jf.dexlib2.util.MethodUtil;
import org.jf.dexlib2.util.ReferenceUtil;
import org.jf.dexlib2.util.TypeUtils;
import org.jf.dexlib2.writer.util.TryListBuilder;
import org.jf.util.BitSetUtils;
import org.jf.util.ExceptionWithContext;
import org.jf.util.SparseArray;

import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.BitSet;
import java.util.List;

The MethodAnalyzer performs several functions. It "analyzes" the instructions and infers the register types for each register, it can deodex odexed instructions, and it can verify the bytecode. The analysis and verification are done in two separate passes, because the analysis has to process instructions multiple times in some cases, and there's no need to perform the verification multiple times, so we wait until the method is fully analyzed and then verify it. Before calling the analyze() method, you must have initialized the ClassPath by calling ClassPath.InitializeClassPath
/** * The MethodAnalyzer performs several functions. It "analyzes" the instructions and infers the register types * for each register, it can deodex odexed instructions, and it can verify the bytecode. The analysis and verification * are done in two separate passes, because the analysis has to process instructions multiple times in some cases, and * there's no need to perform the verification multiple times, so we wait until the method is fully analyzed and then * verify it. * * Before calling the analyze() method, you must have initialized the ClassPath by calling * ClassPath.InitializeClassPath */
public class MethodAnalyzer { @Nonnull private final Method method; @Nonnull private final MethodImplementation methodImpl; private final boolean normalizeVirtualMethods; private final int paramRegisterCount; @Nonnull private final ClassPath classPath; @Nullable private final InlineMethodResolver inlineResolver; // This contains all the AnalyzedInstruction instances, keyed by the code unit address of the instruction @Nonnull private final SparseArray<AnalyzedInstruction> analyzedInstructions = new SparseArray<AnalyzedInstruction>(0); // Which instructions have been analyzed, keyed by instruction index @Nonnull private final BitSet analyzedState; @Nullable private AnalysisException analysisException = null; // This is a dummy instruction that occurs immediately before the first real instruction. We can initialize the // register types for this instruction to the parameter types, in order to have them propagate to all of its // successors, e.g. the first real instruction, the first instructions in any exception handlers covering the first // instruction, etc. private final AnalyzedInstruction startOfMethod; public MethodAnalyzer(@Nonnull ClassPath classPath, @Nonnull Method method, @Nullable InlineMethodResolver inlineResolver, boolean normalizeVirtualMethods) { this.classPath = classPath; this.inlineResolver = inlineResolver; this.normalizeVirtualMethods = normalizeVirtualMethods; this.method = method; MethodImplementation methodImpl = method.getImplementation(); if (methodImpl == null) { throw new IllegalArgumentException("The method has no implementation"); } this.methodImpl = methodImpl; // Override AnalyzedInstruction and provide custom implementations of some of the methods, so that we don't // have to handle the case this special case of instruction being null, in the main class startOfMethod = new AnalyzedInstruction(this, new ImmutableInstruction10x(Opcode.NOP), -1, methodImpl.getRegisterCount()) { @Override protected boolean addPredecessor(AnalyzedInstruction predecessor) { throw new UnsupportedOperationException(); } @Override @Nonnull public RegisterType getPredecessorRegisterType(@Nonnull AnalyzedInstruction predecessor, int registerNumber) { throw new UnsupportedOperationException(); } }; buildInstructionList(); analyzedState = new BitSet(analyzedInstructions.size()); paramRegisterCount = MethodUtil.getParameterRegisterCount(method); analyze(); } @Nonnull public ClassPath getClassPath() { return classPath; } private void analyze() { Method method = this.method; MethodImplementation methodImpl = this.methodImpl; int totalRegisters = methodImpl.getRegisterCount(); int parameterRegisters = paramRegisterCount; int nonParameterRegisters = totalRegisters - parameterRegisters; //if this isn't a static method, determine which register is the "this" register and set the type to the //current class if (!MethodUtil.isStatic(method)) { int thisRegister = totalRegisters - parameterRegisters; //if this is a constructor, then set the "this" register to an uninitialized reference of the current class if (MethodUtil.isConstructor(method)) { setPostRegisterTypeAndPropagateChanges(startOfMethod, thisRegister, RegisterType.getRegisterType(RegisterType.UNINIT_THIS, classPath.getClass(method.getDefiningClass()))); } else { setPostRegisterTypeAndPropagateChanges(startOfMethod, thisRegister, RegisterType.getRegisterType(RegisterType.REFERENCE, classPath.getClass(method.getDefiningClass()))); } propagateParameterTypes(totalRegisters-parameterRegisters+1); } else { propagateParameterTypes(totalRegisters-parameterRegisters); } RegisterType uninit = RegisterType.getRegisterType(RegisterType.UNINIT, null); for (int i=0; i<nonParameterRegisters; i++) { setPostRegisterTypeAndPropagateChanges(startOfMethod, i, uninit); } BitSet instructionsToAnalyze = new BitSet(analyzedInstructions.size()); //make sure all of the "first instructions" are marked for processing for (AnalyzedInstruction successor: startOfMethod.successors) { instructionsToAnalyze.set(successor.instructionIndex); } BitSet undeodexedInstructions = new BitSet(analyzedInstructions.size()); do { boolean didSomething = false; while (!instructionsToAnalyze.isEmpty()) { for(int i=instructionsToAnalyze.nextSetBit(0); i>=0; i=instructionsToAnalyze.nextSetBit(i+1)) { instructionsToAnalyze.clear(i); if (analyzedState.get(i)) { continue; } AnalyzedInstruction instructionToAnalyze = analyzedInstructions.valueAt(i); try { if (instructionToAnalyze.originalInstruction.getOpcode().odexOnly()) { //if we had deodexed an odex instruction in a previous pass, we might have more specific //register information now, so let's restore the original odexed instruction and //re-deodex it instructionToAnalyze.restoreOdexedInstruction(); } if (!analyzeInstruction(instructionToAnalyze)) { undeodexedInstructions.set(i); continue; } else { didSomething = true; undeodexedInstructions.clear(i); } } catch (AnalysisException ex) { this.analysisException = ex; int codeAddress = getInstructionAddress(instructionToAnalyze); ex.codeAddress = codeAddress; ex.addContext(String.format("opcode: %s", instructionToAnalyze.instruction.getOpcode().name)); ex.addContext(String.format("code address: %d", codeAddress)); ex.addContext(String.format("method: %s", ReferenceUtil.getReferenceString(method))); break; } analyzedState.set(instructionToAnalyze.getInstructionIndex()); for (AnalyzedInstruction successor: instructionToAnalyze.successors) { instructionsToAnalyze.set(successor.getInstructionIndex()); } } if (analysisException != null) { break; } } if (!didSomething) { break; } if (!undeodexedInstructions.isEmpty()) { for (int i=undeodexedInstructions.nextSetBit(0); i>=0; i=undeodexedInstructions.nextSetBit(i+1)) { instructionsToAnalyze.set(i); } } } while (true); //Now, go through and fix up any unresolvable odex instructions. These are usually odex instructions //that operate on a null register, and thus always throw an NPE. They can also be any sort of odex instruction //that occurs after an unresolvable odex instruction. We deodex if possible, or replace with an //UnresolvableOdexInstruction for (int i=0; i< analyzedInstructions.size(); i++) { AnalyzedInstruction analyzedInstruction = analyzedInstructions.valueAt(i); Instruction instruction = analyzedInstruction.getInstruction(); if (instruction.getOpcode().odexOnly()) { int objectRegisterNumber; switch (instruction.getOpcode().format) { case Format10x: analyzeOdexReturnVoid(analyzedInstruction, false); continue; case Format21c: case Format22c: analyzePutGetVolatile(analyzedInstruction, false); continue; case Format35c: analyzeInvokeDirectEmpty(analyzedInstruction, false); continue; case Format3rc: analyzeInvokeObjectInitRange(analyzedInstruction, false); continue; case Format22cs: objectRegisterNumber = ((Instruction22cs)instruction).getRegisterB(); break; case Format35mi: case Format35ms: objectRegisterNumber = ((FiveRegisterInstruction)instruction).getRegisterC(); break; case Format3rmi: case Format3rms: objectRegisterNumber = ((RegisterRangeInstruction)instruction).getStartRegister(); break; default: continue; } analyzedInstruction.setDeodexedInstruction( new UnresolvedOdexInstruction(instruction, objectRegisterNumber)); } } } private void propagateParameterTypes(int parameterStartRegister) { int i=0; for (MethodParameter parameter: method.getParameters()) { if (TypeUtils.isWideType(parameter)) { setPostRegisterTypeAndPropagateChanges(startOfMethod, parameterStartRegister + i++, RegisterType.getWideRegisterType(parameter, true)); setPostRegisterTypeAndPropagateChanges(startOfMethod, parameterStartRegister + i++, RegisterType.getWideRegisterType(parameter, false)); } else { setPostRegisterTypeAndPropagateChanges(startOfMethod, parameterStartRegister + i++, RegisterType.getRegisterType(classPath, parameter)); } } } public List<AnalyzedInstruction> getAnalyzedInstructions() { return analyzedInstructions.getValues(); } public List<Instruction> getInstructions() { return Lists.transform(analyzedInstructions.getValues(), new Function<AnalyzedInstruction, Instruction>() { @Nullable @Override public Instruction apply(@Nullable AnalyzedInstruction input) { if (input == null) { return null; } return input.instruction; } }); } @Nullable public AnalysisException getAnalysisException() { return analysisException; } public int getParamRegisterCount() { return paramRegisterCount; } public int getInstructionAddress(@Nonnull AnalyzedInstruction instruction) { return analyzedInstructions.keyAt(instruction.instructionIndex); } private void setDestinationRegisterTypeAndPropagateChanges(@Nonnull AnalyzedInstruction analyzedInstruction, @Nonnull RegisterType registerType) { setPostRegisterTypeAndPropagateChanges(analyzedInstruction, analyzedInstruction.getDestinationRegister(), registerType); } private void propagateChanges(@Nonnull BitSet changedInstructions, int registerNumber, boolean override) { //Using a for loop inside the while loop optimizes for the common case of the successors of an instruction //occurring after the instruction. Any successors that occur prior to the instruction will be picked up on //the next iteration of the while loop. //This could also be done recursively, but in large methods it would likely cause very deep recursion. while (!changedInstructions.isEmpty()) { for (int instructionIndex=changedInstructions.nextSetBit(0); instructionIndex>=0; instructionIndex=changedInstructions.nextSetBit(instructionIndex+1)) { changedInstructions.clear(instructionIndex); propagateRegisterToSuccessors(analyzedInstructions.valueAt(instructionIndex), registerNumber, changedInstructions, override); } } } private void overridePredecessorRegisterTypeAndPropagateChanges( @Nonnull AnalyzedInstruction analyzedInstruction, @Nonnull AnalyzedInstruction predecessor, int registerNumber, @Nonnull RegisterType registerType) { BitSet changedInstructions = new BitSet(analyzedInstructions.size()); if (!analyzedInstruction.overridePredecessorRegisterType( predecessor, registerNumber, registerType, analyzedState)) { return; } changedInstructions.set(analyzedInstruction.instructionIndex); propagateChanges(changedInstructions, registerNumber, true); if (registerType.category == RegisterType.LONG_LO) { checkWidePair(registerNumber, analyzedInstruction); overridePredecessorRegisterTypeAndPropagateChanges(analyzedInstruction, predecessor, registerNumber + 1, RegisterType.LONG_HI_TYPE); } else if (registerType.category == RegisterType.DOUBLE_LO) { checkWidePair(registerNumber, analyzedInstruction); overridePredecessorRegisterTypeAndPropagateChanges(analyzedInstruction, predecessor, registerNumber + 1, RegisterType.DOUBLE_HI_TYPE); } } private void initializeRefAndPropagateChanges(@Nonnull AnalyzedInstruction analyzedInstruction, int registerNumber, @Nonnull RegisterType registerType) { BitSet changedInstructions = new BitSet(analyzedInstructions.size()); if (!analyzedInstruction.setPostRegisterType(registerNumber, registerType)) { return; } propagateRegisterToSuccessors(analyzedInstruction, registerNumber, changedInstructions, false); propagateChanges(changedInstructions, registerNumber, false); if (registerType.category == RegisterType.LONG_LO) { checkWidePair(registerNumber, analyzedInstruction); setPostRegisterTypeAndPropagateChanges(analyzedInstruction, registerNumber+1, RegisterType.LONG_HI_TYPE); } else if (registerType.category == RegisterType.DOUBLE_LO) { checkWidePair(registerNumber, analyzedInstruction); setPostRegisterTypeAndPropagateChanges(analyzedInstruction, registerNumber+1, RegisterType.DOUBLE_HI_TYPE); } } private void setPostRegisterTypeAndPropagateChanges(@Nonnull AnalyzedInstruction analyzedInstruction, int registerNumber, @Nonnull RegisterType registerType) { BitSet changedInstructions = new BitSet(analyzedInstructions.size()); if (!analyzedInstruction.setPostRegisterType(registerNumber, registerType)) { return; } propagateRegisterToSuccessors(analyzedInstruction, registerNumber, changedInstructions, false); propagateChanges(changedInstructions, registerNumber, false); if (registerType.category == RegisterType.LONG_LO) { checkWidePair(registerNumber, analyzedInstruction); setPostRegisterTypeAndPropagateChanges(analyzedInstruction, registerNumber+1, RegisterType.LONG_HI_TYPE); } else if (registerType.category == RegisterType.DOUBLE_LO) { checkWidePair(registerNumber, analyzedInstruction); setPostRegisterTypeAndPropagateChanges(analyzedInstruction, registerNumber+1, RegisterType.DOUBLE_HI_TYPE); } } private void propagateRegisterToSuccessors(@Nonnull AnalyzedInstruction instruction, int registerNumber, @Nonnull BitSet changedInstructions, boolean override) { RegisterType postRegisterType = instruction.getPostInstructionRegisterType(registerNumber); for (AnalyzedInstruction successor: instruction.successors) { if (successor.mergeRegister(registerNumber, postRegisterType, analyzedState, override)) { changedInstructions.set(successor.instructionIndex); } } } private void buildInstructionList() { int registerCount = methodImpl.getRegisterCount(); ImmutableList<Instruction> instructions = ImmutableList.copyOf(methodImpl.getInstructions()); analyzedInstructions.ensureCapacity(instructions.size()); //first, create all the instructions and populate the instructionAddresses array int currentCodeAddress = 0; for (int i=0; i<instructions.size(); i++) { Instruction instruction = instructions.get(i); analyzedInstructions.append(currentCodeAddress, new AnalyzedInstruction(this, instruction, i, registerCount)); assert analyzedInstructions.indexOfKey(currentCodeAddress) == i; currentCodeAddress += instruction.getCodeUnits(); } //next, populate the exceptionHandlers array. The array item for each instruction that can throw an exception //and is covered by a try block should be set to a list of the first instructions of each exception handler //for the try block covering the instruction List<? extends TryBlock<? extends ExceptionHandler>> tries = methodImpl.getTryBlocks(); tries = TryListBuilder.massageTryBlocks(tries); int triesIndex = 0; TryBlock currentTry = null; AnalyzedInstruction[] currentExceptionHandlers = null; AnalyzedInstruction[][] exceptionHandlers = new AnalyzedInstruction[instructions.size()][]; if (tries != null) { for (int i=0; i< analyzedInstructions.size(); i++) { AnalyzedInstruction instruction = analyzedInstructions.valueAt(i); Opcode instructionOpcode = instruction.instruction.getOpcode(); currentCodeAddress = getInstructionAddress(instruction); //check if we have gone past the end of the current try if (currentTry != null) { if (currentTry.getStartCodeAddress() + currentTry.getCodeUnitCount() <= currentCodeAddress) { currentTry = null; triesIndex++; } } //check if the next try is applicable yet if (currentTry == null && triesIndex < tries.size()) { TryBlock<? extends ExceptionHandler> tryBlock = tries.get(triesIndex); if (tryBlock.getStartCodeAddress() <= currentCodeAddress) { assert(tryBlock.getStartCodeAddress() + tryBlock.getCodeUnitCount() > currentCodeAddress); currentTry = tryBlock; currentExceptionHandlers = buildExceptionHandlerArray(tryBlock); } } //if we're inside a try block, and the instruction can throw an exception, then add the exception handlers //for the current instruction if (currentTry != null && instructionOpcode.canThrow()) { exceptionHandlers[i] = currentExceptionHandlers; } } } //finally, populate the successors and predecessors for each instruction. We start at the fake "StartOfMethod" //instruction and follow the execution path. Any unreachable code won't have any predecessors or successors, //and no reachable code will have an unreachable predessor or successor assert analyzedInstructions.size() > 0; BitSet instructionsToProcess = new BitSet(instructions.size()); addPredecessorSuccessor(startOfMethod, analyzedInstructions.valueAt(0), exceptionHandlers, instructionsToProcess); while (!instructionsToProcess.isEmpty()) { int currentInstructionIndex = instructionsToProcess.nextSetBit(0); instructionsToProcess.clear(currentInstructionIndex); AnalyzedInstruction instruction = analyzedInstructions.valueAt(currentInstructionIndex); Opcode instructionOpcode = instruction.instruction.getOpcode(); int instructionCodeAddress = getInstructionAddress(instruction); if (instruction.instruction.getOpcode().canContinue()) { if (currentInstructionIndex == analyzedInstructions.size() - 1) { throw new AnalysisException("Execution can continue past the last instruction"); } AnalyzedInstruction nextInstruction = analyzedInstructions.valueAt(currentInstructionIndex+1); addPredecessorSuccessor(instruction, nextInstruction, exceptionHandlers, instructionsToProcess); } if (instruction.instruction instanceof OffsetInstruction) { OffsetInstruction offsetInstruction = (OffsetInstruction)instruction.instruction; if (instructionOpcode == Opcode.PACKED_SWITCH || instructionOpcode == Opcode.SPARSE_SWITCH) { AnalyzedInstruction analyzedSwitchPayload = analyzedInstructions.get( instructionCodeAddress + offsetInstruction.getCodeOffset()); if (analyzedSwitchPayload == null) { throw new AnalysisException("Invalid switch payload offset"); } SwitchPayload switchPayload = (SwitchPayload)analyzedSwitchPayload.instruction; for (SwitchElement switchElement: switchPayload.getSwitchElements()) { AnalyzedInstruction targetInstruction = analyzedInstructions.get(instructionCodeAddress + switchElement.getOffset()); if (targetInstruction == null) { throw new AnalysisException("Invalid switch target offset"); } addPredecessorSuccessor(instruction, targetInstruction, exceptionHandlers, instructionsToProcess); } } else if (instructionOpcode != Opcode.FILL_ARRAY_DATA) { int targetAddressOffset = offsetInstruction.getCodeOffset(); AnalyzedInstruction targetInstruction = analyzedInstructions.get(instructionCodeAddress + targetAddressOffset); addPredecessorSuccessor(instruction, targetInstruction, exceptionHandlers, instructionsToProcess); } } } } private void addPredecessorSuccessor(@Nonnull AnalyzedInstruction predecessor, @Nonnull AnalyzedInstruction successor, @Nonnull AnalyzedInstruction[][] exceptionHandlers, @Nonnull BitSet instructionsToProcess) { addPredecessorSuccessor(predecessor, successor, exceptionHandlers, instructionsToProcess, false); } private void addPredecessorSuccessor(@Nonnull AnalyzedInstruction predecessor, @Nonnull AnalyzedInstruction successor, @Nonnull AnalyzedInstruction[][] exceptionHandlers, @Nonnull BitSet instructionsToProcess, boolean allowMoveException) { if (!allowMoveException && successor.instruction.getOpcode() == Opcode.MOVE_EXCEPTION) { throw new AnalysisException("Execution can pass from the " + predecessor.instruction.getOpcode().name + " instruction at code address 0x" + Integer.toHexString(getInstructionAddress(predecessor)) + " to the move-exception instruction at address 0x" + Integer.toHexString(getInstructionAddress(successor))); } if (!successor.addPredecessor(predecessor)) { return; } predecessor.addSuccessor(successor); instructionsToProcess.set(successor.getInstructionIndex()); //if the successor can throw an instruction, then we need to add the exception handlers as additional //successors to the predecessor (and then apply this same logic recursively if needed) //Technically, we should handle the monitor-exit instruction as a special case. The exception is actually //thrown *after* the instruction executes, instead of "before" the instruction executes, lke for any other //instruction. But since it doesn't modify any registers, we can treat it like any other instruction. AnalyzedInstruction[] exceptionHandlersForSuccessor = exceptionHandlers[successor.instructionIndex]; if (exceptionHandlersForSuccessor != null) { //the item for this instruction in exceptionHandlersForSuccessor should only be set if this instruction //can throw an exception assert successor.instruction.getOpcode().canThrow(); for (AnalyzedInstruction exceptionHandler: exceptionHandlersForSuccessor) { addPredecessorSuccessor(predecessor, exceptionHandler, exceptionHandlers, instructionsToProcess, true); } } } @Nonnull private AnalyzedInstruction[] buildExceptionHandlerArray(@Nonnull TryBlock<? extends ExceptionHandler> tryBlock) { List<? extends ExceptionHandler> exceptionHandlers = tryBlock.getExceptionHandlers(); AnalyzedInstruction[] handlerInstructions = new AnalyzedInstruction[exceptionHandlers.size()]; for (int i=0; i<exceptionHandlers.size(); i++) { handlerInstructions[i] = analyzedInstructions.get(exceptionHandlers.get(i).getHandlerCodeAddress()); } return handlerInstructions; }
Returns:false if analyzedInstruction is an odex instruction that couldn't be deodexed, due to its object register being null
/** * @return false if analyzedInstruction is an odex instruction that couldn't be deodexed, due to its * object register being null */
private boolean analyzeInstruction(@Nonnull AnalyzedInstruction analyzedInstruction) { Instruction instruction = analyzedInstruction.instruction; switch (instruction.getOpcode()) { case NOP: return true; case MOVE: case MOVE_FROM16: case MOVE_16: case MOVE_WIDE: case MOVE_WIDE_FROM16: case MOVE_WIDE_16: case MOVE_OBJECT: case MOVE_OBJECT_FROM16: case MOVE_OBJECT_16: analyzeMove(analyzedInstruction); return true; case MOVE_RESULT: case MOVE_RESULT_WIDE: case MOVE_RESULT_OBJECT: analyzeMoveResult(analyzedInstruction); return true; case MOVE_EXCEPTION: analyzeMoveException(analyzedInstruction); return true; case RETURN_VOID: case RETURN: case RETURN_WIDE: case RETURN_OBJECT: return true; case RETURN_VOID_BARRIER: case RETURN_VOID_NO_BARRIER: analyzeOdexReturnVoid(analyzedInstruction); return true; case CONST_4: case CONST_16: case CONST: case CONST_HIGH16: analyzeConst(analyzedInstruction); return true; case CONST_WIDE_16: case CONST_WIDE_32: case CONST_WIDE: case CONST_WIDE_HIGH16: analyzeWideConst(analyzedInstruction); return true; case CONST_STRING: case CONST_STRING_JUMBO: analyzeConstString(analyzedInstruction); return true; case CONST_CLASS: analyzeConstClass(analyzedInstruction); return true; case MONITOR_ENTER: case MONITOR_EXIT: return true; case CHECK_CAST: analyzeCheckCast(analyzedInstruction); return true; case INSTANCE_OF: analyzeInstanceOf(analyzedInstruction); return true; case ARRAY_LENGTH: analyzeArrayLength(analyzedInstruction); return true; case NEW_INSTANCE: analyzeNewInstance(analyzedInstruction); return true; case NEW_ARRAY: analyzeNewArray(analyzedInstruction); return true; case FILLED_NEW_ARRAY: case FILLED_NEW_ARRAY_RANGE: return true; case FILL_ARRAY_DATA: return true; case THROW: case GOTO: case GOTO_16: case GOTO_32: return true; case PACKED_SWITCH: case SPARSE_SWITCH: return true; case CMPL_FLOAT: case CMPG_FLOAT: case CMPL_DOUBLE: case CMPG_DOUBLE: case CMP_LONG: analyzeFloatWideCmp(analyzedInstruction); return true; case IF_EQ: case IF_NE: case IF_LT: case IF_GE: case IF_GT: case IF_LE: case IF_LTZ: case IF_GEZ: case IF_GTZ: case IF_LEZ: return true; case IF_EQZ: case IF_NEZ: analyzeIfEqzNez(analyzedInstruction); return true; case AGET: analyze32BitPrimitiveAget(analyzedInstruction, RegisterType.INTEGER_TYPE); return true; case AGET_BOOLEAN: analyze32BitPrimitiveAget(analyzedInstruction, RegisterType.BOOLEAN_TYPE); return true; case AGET_BYTE: analyze32BitPrimitiveAget(analyzedInstruction, RegisterType.BYTE_TYPE); return true; case AGET_CHAR: analyze32BitPrimitiveAget(analyzedInstruction, RegisterType.CHAR_TYPE); return true; case AGET_SHORT: analyze32BitPrimitiveAget(analyzedInstruction, RegisterType.SHORT_TYPE); return true; case AGET_WIDE: analyzeAgetWide(analyzedInstruction); return true; case AGET_OBJECT: analyzeAgetObject(analyzedInstruction); return true; case APUT: case APUT_BOOLEAN: case APUT_BYTE: case APUT_CHAR: case APUT_SHORT: case APUT_WIDE: case APUT_OBJECT: return true; case IGET: analyze32BitPrimitiveIgetSget(analyzedInstruction, RegisterType.INTEGER_TYPE); return true; case IGET_BOOLEAN: analyze32BitPrimitiveIgetSget(analyzedInstruction, RegisterType.BOOLEAN_TYPE); return true; case IGET_BYTE: analyze32BitPrimitiveIgetSget(analyzedInstruction, RegisterType.BYTE_TYPE); return true; case IGET_CHAR: analyze32BitPrimitiveIgetSget(analyzedInstruction, RegisterType.CHAR_TYPE); return true; case IGET_SHORT: analyze32BitPrimitiveIgetSget(analyzedInstruction, RegisterType.SHORT_TYPE); return true; case IGET_WIDE: case IGET_OBJECT: analyzeIgetSgetWideObject(analyzedInstruction); return true; case IPUT: case IPUT_BOOLEAN: case IPUT_BYTE: case IPUT_CHAR: case IPUT_SHORT: case IPUT_WIDE: case IPUT_OBJECT: return true; case SGET: analyze32BitPrimitiveIgetSget(analyzedInstruction, RegisterType.INTEGER_TYPE); return true; case SGET_BOOLEAN: analyze32BitPrimitiveIgetSget(analyzedInstruction, RegisterType.BOOLEAN_TYPE); return true; case SGET_BYTE: analyze32BitPrimitiveIgetSget(analyzedInstruction, RegisterType.BYTE_TYPE); return true; case SGET_CHAR: analyze32BitPrimitiveIgetSget(analyzedInstruction, RegisterType.CHAR_TYPE); return true; case SGET_SHORT: analyze32BitPrimitiveIgetSget(analyzedInstruction, RegisterType.SHORT_TYPE); return true; case SGET_WIDE: case SGET_OBJECT: analyzeIgetSgetWideObject(analyzedInstruction); return true; case SPUT: case SPUT_BOOLEAN: case SPUT_BYTE: case SPUT_CHAR: case SPUT_SHORT: case SPUT_WIDE: case SPUT_OBJECT: return true; case INVOKE_VIRTUAL: analyzeInvokeVirtual(analyzedInstruction, false); return true; case INVOKE_SUPER: analyzeInvokeVirtual(analyzedInstruction, false); return true; case INVOKE_DIRECT: analyzeInvokeDirect(analyzedInstruction); return true; case INVOKE_STATIC: return true; case INVOKE_INTERFACE: // TODO: normalize interfaces return true; case INVOKE_VIRTUAL_RANGE: analyzeInvokeVirtual(analyzedInstruction, true); return true; case INVOKE_SUPER_RANGE: analyzeInvokeVirtual(analyzedInstruction, true); return true; case INVOKE_DIRECT_RANGE: analyzeInvokeDirectRange(analyzedInstruction); return true; case INVOKE_STATIC_RANGE: return true; case INVOKE_INTERFACE_RANGE: // TODO: normalize interfaces return true; case NEG_INT: case NOT_INT: analyzeUnaryOp(analyzedInstruction, RegisterType.INTEGER_TYPE); return true; case NEG_LONG: case NOT_LONG: analyzeUnaryOp(analyzedInstruction, RegisterType.LONG_LO_TYPE); return true; case NEG_FLOAT: analyzeUnaryOp(analyzedInstruction, RegisterType.FLOAT_TYPE); return true; case NEG_DOUBLE: analyzeUnaryOp(analyzedInstruction, RegisterType.DOUBLE_LO_TYPE); return true; case INT_TO_LONG: analyzeUnaryOp(analyzedInstruction, RegisterType.LONG_LO_TYPE); return true; case INT_TO_FLOAT: analyzeUnaryOp(analyzedInstruction, RegisterType.FLOAT_TYPE); return true; case INT_TO_DOUBLE: analyzeUnaryOp(analyzedInstruction, RegisterType.DOUBLE_LO_TYPE); return true; case LONG_TO_INT: case DOUBLE_TO_INT: analyzeUnaryOp(analyzedInstruction, RegisterType.INTEGER_TYPE); return true; case LONG_TO_FLOAT: case DOUBLE_TO_FLOAT: analyzeUnaryOp(analyzedInstruction, RegisterType.FLOAT_TYPE); return true; case LONG_TO_DOUBLE: analyzeUnaryOp(analyzedInstruction, RegisterType.DOUBLE_LO_TYPE); return true; case FLOAT_TO_INT: analyzeUnaryOp(analyzedInstruction, RegisterType.INTEGER_TYPE); return true; case FLOAT_TO_LONG: analyzeUnaryOp(analyzedInstruction, RegisterType.LONG_LO_TYPE); return true; case FLOAT_TO_DOUBLE: analyzeUnaryOp(analyzedInstruction, RegisterType.DOUBLE_LO_TYPE); return true; case DOUBLE_TO_LONG: analyzeUnaryOp(analyzedInstruction, RegisterType.LONG_LO_TYPE); return true; case INT_TO_BYTE: analyzeUnaryOp(analyzedInstruction, RegisterType.BYTE_TYPE); return true; case INT_TO_CHAR: analyzeUnaryOp(analyzedInstruction, RegisterType.CHAR_TYPE); return true; case INT_TO_SHORT: analyzeUnaryOp(analyzedInstruction, RegisterType.SHORT_TYPE); return true; case ADD_INT: case SUB_INT: case MUL_INT: case DIV_INT: case REM_INT: case SHL_INT: case SHR_INT: case USHR_INT: analyzeBinaryOp(analyzedInstruction, RegisterType.INTEGER_TYPE, false); return true; case AND_INT: case OR_INT: case XOR_INT: analyzeBinaryOp(analyzedInstruction, RegisterType.INTEGER_TYPE, true); return true; case ADD_LONG: case SUB_LONG: case MUL_LONG: case DIV_LONG: case REM_LONG: case AND_LONG: case OR_LONG: case XOR_LONG: case SHL_LONG: case SHR_LONG: case USHR_LONG: analyzeBinaryOp(analyzedInstruction, RegisterType.LONG_LO_TYPE, false); return true; case ADD_FLOAT: case SUB_FLOAT: case MUL_FLOAT: case DIV_FLOAT: case REM_FLOAT: analyzeBinaryOp(analyzedInstruction, RegisterType.FLOAT_TYPE, false); return true; case ADD_DOUBLE: case SUB_DOUBLE: case MUL_DOUBLE: case DIV_DOUBLE: case REM_DOUBLE: analyzeBinaryOp(analyzedInstruction, RegisterType.DOUBLE_LO_TYPE, false); return true; case ADD_INT_2ADDR: case SUB_INT_2ADDR: case MUL_INT_2ADDR: case DIV_INT_2ADDR: case REM_INT_2ADDR: case SHL_INT_2ADDR: case SHR_INT_2ADDR: case USHR_INT_2ADDR: analyzeBinary2AddrOp(analyzedInstruction, RegisterType.INTEGER_TYPE, false); return true; case AND_INT_2ADDR: case OR_INT_2ADDR: case XOR_INT_2ADDR: analyzeBinary2AddrOp(analyzedInstruction, RegisterType.INTEGER_TYPE, true); return true; case ADD_LONG_2ADDR: case SUB_LONG_2ADDR: case MUL_LONG_2ADDR: case DIV_LONG_2ADDR: case REM_LONG_2ADDR: case AND_LONG_2ADDR: case OR_LONG_2ADDR: case XOR_LONG_2ADDR: case SHL_LONG_2ADDR: case SHR_LONG_2ADDR: case USHR_LONG_2ADDR: analyzeBinary2AddrOp(analyzedInstruction, RegisterType.LONG_LO_TYPE, false); return true; case ADD_FLOAT_2ADDR: case SUB_FLOAT_2ADDR: case MUL_FLOAT_2ADDR: case DIV_FLOAT_2ADDR: case REM_FLOAT_2ADDR: analyzeBinary2AddrOp(analyzedInstruction, RegisterType.FLOAT_TYPE, false); return true; case ADD_DOUBLE_2ADDR: case SUB_DOUBLE_2ADDR: case MUL_DOUBLE_2ADDR: case DIV_DOUBLE_2ADDR: case REM_DOUBLE_2ADDR: analyzeBinary2AddrOp(analyzedInstruction, RegisterType.DOUBLE_LO_TYPE, false); return true; case ADD_INT_LIT16: case RSUB_INT: case MUL_INT_LIT16: case DIV_INT_LIT16: case REM_INT_LIT16: analyzeLiteralBinaryOp(analyzedInstruction, RegisterType.INTEGER_TYPE, false); return true; case AND_INT_LIT16: case OR_INT_LIT16: case XOR_INT_LIT16: analyzeLiteralBinaryOp(analyzedInstruction, RegisterType.INTEGER_TYPE, true); return true; case ADD_INT_LIT8: case RSUB_INT_LIT8: case MUL_INT_LIT8: case DIV_INT_LIT8: case REM_INT_LIT8: case SHL_INT_LIT8: analyzeLiteralBinaryOp(analyzedInstruction, RegisterType.INTEGER_TYPE, false); return true; case AND_INT_LIT8: case OR_INT_LIT8: case XOR_INT_LIT8: analyzeLiteralBinaryOp(analyzedInstruction, RegisterType.INTEGER_TYPE, true); return true; case SHR_INT_LIT8: analyzeLiteralBinaryOp(analyzedInstruction, getDestTypeForLiteralShiftRight(analyzedInstruction, true), false); return true; case USHR_INT_LIT8: analyzeLiteralBinaryOp(analyzedInstruction, getDestTypeForLiteralShiftRight(analyzedInstruction, false), false); return true; /*odexed instructions*/ case IGET_VOLATILE: case IPUT_VOLATILE: case SGET_VOLATILE: case SPUT_VOLATILE: case IGET_OBJECT_VOLATILE: case IGET_WIDE_VOLATILE: case IPUT_WIDE_VOLATILE: case SGET_WIDE_VOLATILE: case SPUT_WIDE_VOLATILE: analyzePutGetVolatile(analyzedInstruction); return true; case THROW_VERIFICATION_ERROR: return true; case EXECUTE_INLINE: analyzeExecuteInline(analyzedInstruction); return true; case EXECUTE_INLINE_RANGE: analyzeExecuteInlineRange(analyzedInstruction); return true; case INVOKE_DIRECT_EMPTY: analyzeInvokeDirectEmpty(analyzedInstruction); return true; case INVOKE_OBJECT_INIT_RANGE: analyzeInvokeObjectInitRange(analyzedInstruction); return true; case IGET_QUICK: case IGET_WIDE_QUICK: case IGET_OBJECT_QUICK: case IPUT_QUICK: case IPUT_WIDE_QUICK: case IPUT_OBJECT_QUICK: case IPUT_BOOLEAN_QUICK: case IPUT_BYTE_QUICK: case IPUT_CHAR_QUICK: case IPUT_SHORT_QUICK: case IGET_BOOLEAN_QUICK: case IGET_BYTE_QUICK: case IGET_CHAR_QUICK: case IGET_SHORT_QUICK: return analyzeIputIgetQuick(analyzedInstruction); case INVOKE_VIRTUAL_QUICK: return analyzeInvokeVirtualQuick(analyzedInstruction, false, false); case INVOKE_SUPER_QUICK: return analyzeInvokeVirtualQuick(analyzedInstruction, true, false); case INVOKE_VIRTUAL_QUICK_RANGE: return analyzeInvokeVirtualQuick(analyzedInstruction, false, true); case INVOKE_SUPER_QUICK_RANGE: return analyzeInvokeVirtualQuick(analyzedInstruction, true, true); case IPUT_OBJECT_VOLATILE: case SGET_OBJECT_VOLATILE: case SPUT_OBJECT_VOLATILE: analyzePutGetVolatile(analyzedInstruction); return true; default: assert false; return true; } } private static final BitSet Primitive32BitCategories = BitSetUtils.bitSetOfIndexes( RegisterType.NULL, RegisterType.ONE, RegisterType.BOOLEAN, RegisterType.BYTE, RegisterType.POS_BYTE, RegisterType.SHORT, RegisterType.POS_SHORT, RegisterType.CHAR, RegisterType.INTEGER, RegisterType.FLOAT); private static final BitSet WideLowCategories = BitSetUtils.bitSetOfIndexes( RegisterType.LONG_LO, RegisterType.DOUBLE_LO); private static final BitSet WideHighCategories = BitSetUtils.bitSetOfIndexes( RegisterType.LONG_HI, RegisterType.DOUBLE_HI); private static final BitSet ReferenceOrUninitCategories = BitSetUtils.bitSetOfIndexes( RegisterType.NULL, RegisterType.UNINIT_REF, RegisterType.UNINIT_THIS, RegisterType.REFERENCE); private static final BitSet BooleanCategories = BitSetUtils.bitSetOfIndexes( RegisterType.NULL, RegisterType.ONE, RegisterType.BOOLEAN); private void analyzeMove(@Nonnull AnalyzedInstruction analyzedInstruction) { TwoRegisterInstruction instruction = (TwoRegisterInstruction)analyzedInstruction.instruction; RegisterType sourceRegisterType = analyzedInstruction.getPreInstructionRegisterType(instruction.getRegisterB()); setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, sourceRegisterType); } private void analyzeMoveResult(@Nonnull AnalyzedInstruction analyzedInstruction) { AnalyzedInstruction previousInstruction = null; if (analyzedInstruction.instructionIndex > 0) { previousInstruction = analyzedInstructions.valueAt(analyzedInstruction.instructionIndex-1); } if (previousInstruction == null || !previousInstruction.instruction.getOpcode().setsResult()) { throw new AnalysisException(analyzedInstruction.instruction.getOpcode().name + " must occur after an " + "invoke-*/fill-new-array instruction"); } RegisterType resultRegisterType; ReferenceInstruction invokeInstruction = (ReferenceInstruction)previousInstruction.instruction; Reference reference = invokeInstruction.getReference(); if (reference instanceof MethodReference) { resultRegisterType = RegisterType.getRegisterType(classPath, ((MethodReference)reference).getReturnType()); } else { resultRegisterType = RegisterType.getRegisterType(classPath, (TypeReference)reference); } setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, resultRegisterType); } private void analyzeMoveException(@Nonnull AnalyzedInstruction analyzedInstruction) { int instructionAddress = getInstructionAddress(analyzedInstruction); RegisterType exceptionType = RegisterType.UNKNOWN_TYPE; for (TryBlock<? extends ExceptionHandler> tryBlock: methodImpl.getTryBlocks()) { for (ExceptionHandler handler: tryBlock.getExceptionHandlers()) { if (handler.getHandlerCodeAddress() == instructionAddress) { String type = handler.getExceptionType(); if (type == null) { exceptionType = RegisterType.getRegisterType(RegisterType.REFERENCE, classPath.getClass("Ljava/lang/Throwable;")); } else { exceptionType = RegisterType.getRegisterType(RegisterType.REFERENCE, classPath.getClass(type)) .merge(exceptionType); } } } } if (exceptionType.category == RegisterType.UNKNOWN) { throw new AnalysisException("move-exception must be the first instruction in an exception handler block"); } setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, exceptionType); } private void analyzeOdexReturnVoid(AnalyzedInstruction analyzedInstruction) { analyzeOdexReturnVoid(analyzedInstruction, true); } private void analyzeOdexReturnVoid(@Nonnull AnalyzedInstruction analyzedInstruction, boolean analyzeResult) { Instruction10x deodexedInstruction = new ImmutableInstruction10x(Opcode.RETURN_VOID); analyzedInstruction.setDeodexedInstruction(deodexedInstruction); if (analyzeResult) { analyzeInstruction(analyzedInstruction); } } private void analyzeConst(@Nonnull AnalyzedInstruction analyzedInstruction) { NarrowLiteralInstruction instruction = (NarrowLiteralInstruction)analyzedInstruction.instruction; //we assume that the literal value is a valid value for the given instruction type, because it's impossible //to store an invalid literal with the instruction. so we don't need to check the type of the literal setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, RegisterType.getRegisterTypeForLiteral(instruction.getNarrowLiteral())); } private void analyzeWideConst(@Nonnull AnalyzedInstruction analyzedInstruction) { setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, RegisterType.LONG_LO_TYPE); } private void analyzeConstString(@Nonnull AnalyzedInstruction analyzedInstruction) { TypeProto stringClass = classPath.getClass("Ljava/lang/String;"); RegisterType stringType = RegisterType.getRegisterType(RegisterType.REFERENCE, stringClass); setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, stringType); } private void analyzeConstClass(@Nonnull AnalyzedInstruction analyzedInstruction) { TypeProto classClass = classPath.getClass("Ljava/lang/Class;"); RegisterType classType = RegisterType.getRegisterType(RegisterType.REFERENCE, classClass); setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, classType); } private void analyzeCheckCast(@Nonnull AnalyzedInstruction analyzedInstruction) { ReferenceInstruction instruction = (ReferenceInstruction)analyzedInstruction.instruction; TypeReference reference = (TypeReference)instruction.getReference(); RegisterType castRegisterType = RegisterType.getRegisterType(classPath, reference); setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, castRegisterType); } public static boolean isNotWideningConversion(RegisterType originalType, RegisterType newType) { if (originalType.type == null || newType.type == null) { return true; } if (originalType.type.isInterface()) { return newType.type.implementsInterface(originalType.type.getType()); } else { TypeProto commonSuperclass = newType.type.getCommonSuperclass(originalType.type); if (commonSuperclass.getType().equals(originalType.type.getType())) { return true; } if (commonSuperclass.getType().equals(newType.type.getType())) { return false; } } return true; } static boolean canPropagateTypeAfterInstanceOf(AnalyzedInstruction analyzedInstanceOfInstruction, AnalyzedInstruction analyzedIfInstruction, ClassPath classPath) { if (!classPath.isArt()) { return false; } Instruction ifInstruction = analyzedIfInstruction.instruction; if (((Instruction21t)ifInstruction).getRegisterA() == analyzedInstanceOfInstruction.getDestinationRegister()) { Reference reference = ((Instruction22c)analyzedInstanceOfInstruction.getInstruction()).getReference(); RegisterType registerType = RegisterType.getRegisterType(classPath, (TypeReference)reference); try { if (registerType.type != null && !registerType.type.isInterface()) { int objectRegister = ((TwoRegisterInstruction)analyzedInstanceOfInstruction.getInstruction()) .getRegisterB(); RegisterType originalType = analyzedIfInstruction.getPreInstructionRegisterType(objectRegister); return isNotWideningConversion(originalType, registerType); } } catch (UnresolvedClassException ex) { return false; } } return false; }
Art uses a peephole optimization for an if-eqz or if-nez that occur immediately after an instance-of. It will narrow the type if possible, and then NOP out any corresponding check-cast instruction later on
/** * Art uses a peephole optimization for an if-eqz or if-nez that occur immediately after an instance-of. It will * narrow the type if possible, and then NOP out any corresponding check-cast instruction later on */
private void analyzeIfEqzNez(@Nonnull AnalyzedInstruction analyzedInstruction) { if (classPath.isArt()) { int instructionIndex = analyzedInstruction.getInstructionIndex(); if (instructionIndex > 0) { if (analyzedInstruction.getPredecessorCount() != 1) { return; } AnalyzedInstruction prevAnalyzedInstruction = analyzedInstruction.getPredecessors().first(); if (prevAnalyzedInstruction.instruction.getOpcode() == Opcode.INSTANCE_OF) { AnalyzedInstruction fallthroughInstruction = analyzedInstructions.valueAt( analyzedInstruction.getInstructionIndex() + 1); int nextAddress = getInstructionAddress(analyzedInstruction) + ((Instruction21t)analyzedInstruction.instruction).getCodeOffset(); AnalyzedInstruction branchInstruction = analyzedInstructions.get(nextAddress); int narrowingRegister = ((Instruction22c)prevAnalyzedInstruction.instruction).getRegisterB(); RegisterType originalType = analyzedInstruction.getPreInstructionRegisterType(narrowingRegister); Instruction22c instanceOfInstruction = (Instruction22c)prevAnalyzedInstruction.instruction; RegisterType newType = RegisterType.getRegisterType(classPath, (TypeReference)instanceOfInstruction.getReference()); for (int register : analyzedInstruction.getSetRegisters()) { if (analyzedInstruction.instruction.getOpcode() == Opcode.IF_EQZ) { overridePredecessorRegisterTypeAndPropagateChanges(fallthroughInstruction, analyzedInstruction, register, newType); overridePredecessorRegisterTypeAndPropagateChanges(branchInstruction, analyzedInstruction, register, originalType); } else { overridePredecessorRegisterTypeAndPropagateChanges(fallthroughInstruction, analyzedInstruction, register, originalType); overridePredecessorRegisterTypeAndPropagateChanges(branchInstruction, analyzedInstruction, register, newType); } } } } } } private void analyzeInstanceOf(@Nonnull AnalyzedInstruction analyzedInstruction) { setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, RegisterType.BOOLEAN_TYPE); } private void analyzeArrayLength(@Nonnull AnalyzedInstruction analyzedInstruction) { setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, RegisterType.INTEGER_TYPE); } private void analyzeNewInstance(@Nonnull AnalyzedInstruction analyzedInstruction) { ReferenceInstruction instruction = (ReferenceInstruction)analyzedInstruction.instruction; int register = ((OneRegisterInstruction)analyzedInstruction.instruction).getRegisterA(); RegisterType destRegisterType = analyzedInstruction.getPostInstructionRegisterType(register); if (destRegisterType.category != RegisterType.UNKNOWN) { //the post-instruction destination register will only be set if we have already analyzed this instruction //at least once. If this is the case, then the uninit reference has already been propagated to all //successors and nothing else needs to be done. assert destRegisterType.category == RegisterType.UNINIT_REF; return; } TypeReference typeReference = (TypeReference)instruction.getReference(); RegisterType classType = RegisterType.getRegisterType(classPath, typeReference); setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, RegisterType.getRegisterType(RegisterType.UNINIT_REF, classType.type)); } private void analyzeNewArray(@Nonnull AnalyzedInstruction analyzedInstruction) { ReferenceInstruction instruction = (ReferenceInstruction)analyzedInstruction.instruction; TypeReference type = (TypeReference)instruction.getReference(); if (type.getType().charAt(0) != '[') { throw new AnalysisException("new-array used with non-array type"); } RegisterType arrayType = RegisterType.getRegisterType(classPath, type); setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, arrayType); } private void analyzeFloatWideCmp(@Nonnull AnalyzedInstruction analyzedInstruction) { setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, RegisterType.BYTE_TYPE); } private void analyze32BitPrimitiveAget(@Nonnull AnalyzedInstruction analyzedInstruction, @Nonnull RegisterType registerType) { setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, registerType); } private void analyzeAgetWide(@Nonnull AnalyzedInstruction analyzedInstruction) { ThreeRegisterInstruction instruction = (ThreeRegisterInstruction)analyzedInstruction.instruction; RegisterType arrayRegisterType = analyzedInstruction.getPreInstructionRegisterType(instruction.getRegisterB()); if (arrayRegisterType.category != RegisterType.NULL) { if (arrayRegisterType.category != RegisterType.REFERENCE || !(arrayRegisterType.type instanceof ArrayProto)) { throw new AnalysisException("aget-wide used with non-array register: %s", arrayRegisterType.toString()); } ArrayProto arrayProto = (ArrayProto)arrayRegisterType.type; if (arrayProto.dimensions != 1) { throw new AnalysisException("aget-wide used with multi-dimensional array: %s", arrayRegisterType.toString()); } char arrayBaseType = arrayProto.getElementType().charAt(0); if (arrayBaseType == 'J') { setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, RegisterType.LONG_LO_TYPE); } else if (arrayBaseType == 'D') { setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, RegisterType.DOUBLE_LO_TYPE); } else { throw new AnalysisException("aget-wide used with narrow array: %s", arrayRegisterType); } } else { // If the array register is null, we can assume that the destination register was meant to be a wide type. // This is the same behavior as dalvik's verifier setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, RegisterType.LONG_LO_TYPE); } } private void analyzeAgetObject(@Nonnull AnalyzedInstruction analyzedInstruction) { ThreeRegisterInstruction instruction = (ThreeRegisterInstruction)analyzedInstruction.instruction; RegisterType arrayRegisterType = analyzedInstruction.getPreInstructionRegisterType(instruction.getRegisterB()); if (arrayRegisterType.category != RegisterType.NULL) { if (arrayRegisterType.category != RegisterType.REFERENCE || !(arrayRegisterType.type instanceof ArrayProto)) { throw new AnalysisException("aget-object used with non-array register: %s", arrayRegisterType.toString()); } ArrayProto arrayProto = (ArrayProto)arrayRegisterType.type; String elementType = arrayProto.getImmediateElementType(); setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, RegisterType.getRegisterType(RegisterType.REFERENCE, classPath.getClass(elementType))); } else { // If the array register is null, we can assume that the destination register was meant to be a reference // type, so we set the destination to NULL. This is the same behavior as dalvik's verifier setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, RegisterType.NULL_TYPE); } } private void analyze32BitPrimitiveIgetSget(@Nonnull AnalyzedInstruction analyzedInstruction, @Nonnull RegisterType registerType) { setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, registerType); } private void analyzeIgetSgetWideObject(@Nonnull AnalyzedInstruction analyzedInstruction) { ReferenceInstruction referenceInstruction = (ReferenceInstruction)analyzedInstruction.instruction; FieldReference fieldReference = (FieldReference)referenceInstruction.getReference(); RegisterType fieldType = RegisterType.getRegisterType(classPath, fieldReference.getType()); setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, fieldType); } private void analyzeInvokeDirect(@Nonnull AnalyzedInstruction analyzedInstruction) { FiveRegisterInstruction instruction = (FiveRegisterInstruction)analyzedInstruction.instruction; analyzeInvokeDirectCommon(analyzedInstruction, instruction.getRegisterC()); } private void analyzeInvokeDirectRange(@Nonnull AnalyzedInstruction analyzedInstruction) { RegisterRangeInstruction instruction = (RegisterRangeInstruction)analyzedInstruction.instruction; analyzeInvokeDirectCommon(analyzedInstruction, instruction.getStartRegister()); } private void analyzeInvokeDirectCommon(@Nonnull AnalyzedInstruction analyzedInstruction, int objectRegister) { // This handles the case of invoking a constructor on an uninitialized reference. This propagates the // initialized type for the object register, and also any known aliased registers. // // In some cases, unrelated uninitialized references may not have been propagated past this instruction. This // happens when propagating those types and the type of object register of this instruction isn't known yet. // In this case, we can't determine if the uninitialized reference being propagated in an alias of the object // register, so we don't stop propagation. // // We check for any of these unpropagated uninitialized references here and propagate them. if (analyzedInstruction.isInvokeInit()) { RegisterType uninitRef = analyzedInstruction.getPreInstructionRegisterType(objectRegister); if (uninitRef.category != RegisterType.UNINIT_REF && uninitRef.category != RegisterType.UNINIT_THIS) { assert analyzedInstruction.getSetRegisters().isEmpty(); return; } RegisterType initRef = RegisterType.getRegisterType(RegisterType.REFERENCE, uninitRef.type); for (int register: analyzedInstruction.getSetRegisters()) { RegisterType registerType = analyzedInstruction.getPreInstructionRegisterType(register); if (registerType == uninitRef) { setPostRegisterTypeAndPropagateChanges(analyzedInstruction, register, initRef); } else { // This is unrelated uninitialized reference. propagate it as-is setPostRegisterTypeAndPropagateChanges(analyzedInstruction, register, registerType); } } } } private void analyzeUnaryOp(@Nonnull AnalyzedInstruction analyzedInstruction, @Nonnull RegisterType destRegisterType) { setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, destRegisterType); } private void analyzeBinaryOp(@Nonnull AnalyzedInstruction analyzedInstruction, @Nonnull RegisterType destRegisterType, boolean checkForBoolean) { if (checkForBoolean) { ThreeRegisterInstruction instruction = (ThreeRegisterInstruction)analyzedInstruction.instruction; RegisterType source1RegisterType = analyzedInstruction.getPreInstructionRegisterType(instruction.getRegisterB()); RegisterType source2RegisterType = analyzedInstruction.getPreInstructionRegisterType(instruction.getRegisterC()); if (BooleanCategories.get(source1RegisterType.category) && BooleanCategories.get(source2RegisterType.category)) { destRegisterType = RegisterType.BOOLEAN_TYPE; } } setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, destRegisterType); } private void analyzeBinary2AddrOp(@Nonnull AnalyzedInstruction analyzedInstruction, @Nonnull RegisterType destRegisterType, boolean checkForBoolean) { if (checkForBoolean) { TwoRegisterInstruction instruction = (TwoRegisterInstruction)analyzedInstruction.instruction; RegisterType source1RegisterType = analyzedInstruction.getPreInstructionRegisterType(instruction.getRegisterA()); RegisterType source2RegisterType = analyzedInstruction.getPreInstructionRegisterType(instruction.getRegisterB()); if (BooleanCategories.get(source1RegisterType.category) && BooleanCategories.get(source2RegisterType.category)) { destRegisterType = RegisterType.BOOLEAN_TYPE; } } setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, destRegisterType); } private void analyzeLiteralBinaryOp(@Nonnull AnalyzedInstruction analyzedInstruction, @Nonnull RegisterType destRegisterType, boolean checkForBoolean) { if (checkForBoolean) { TwoRegisterInstruction instruction = (TwoRegisterInstruction)analyzedInstruction.instruction; RegisterType sourceRegisterType = analyzedInstruction.getPreInstructionRegisterType(instruction.getRegisterB()); if (BooleanCategories.get(sourceRegisterType.category)) { int literal = ((NarrowLiteralInstruction)analyzedInstruction.instruction).getNarrowLiteral(); if (literal == 0 || literal == 1) { destRegisterType = RegisterType.BOOLEAN_TYPE; } } } setDestinationRegisterTypeAndPropagateChanges(analyzedInstruction, destRegisterType); } private RegisterType getDestTypeForLiteralShiftRight(@Nonnull AnalyzedInstruction analyzedInstruction, boolean signedShift) { TwoRegisterInstruction instruction = (TwoRegisterInstruction)analyzedInstruction.instruction; RegisterType sourceRegisterType = getAndCheckSourceRegister(analyzedInstruction, instruction.getRegisterB(), Primitive32BitCategories); long literalShift = ((NarrowLiteralInstruction)analyzedInstruction.instruction).getNarrowLiteral(); if (literalShift == 0) { return sourceRegisterType; } RegisterType destRegisterType; if (!signedShift) { destRegisterType = RegisterType.INTEGER_TYPE; } else { destRegisterType = sourceRegisterType; } literalShift = literalShift & 0x1f; switch (sourceRegisterType.category) { case RegisterType.INTEGER: case RegisterType.FLOAT: if (!signedShift) { if (literalShift > 24) { return RegisterType.POS_BYTE_TYPE; } if (literalShift >= 16) { return RegisterType.CHAR_TYPE; } } else { if (literalShift >= 24) { return RegisterType.BYTE_TYPE; } if (literalShift >= 16) { return RegisterType.SHORT_TYPE; } } break; case RegisterType.SHORT: if (signedShift && literalShift >= 8) { return RegisterType.BYTE_TYPE; } break; case RegisterType.POS_SHORT: if (literalShift >= 8) { return RegisterType.POS_BYTE_TYPE; } break; case RegisterType.CHAR: if (literalShift > 8) { return RegisterType.POS_BYTE_TYPE; } break; case RegisterType.BYTE: break; case RegisterType.POS_BYTE: return RegisterType.POS_BYTE_TYPE; case RegisterType.NULL: case RegisterType.ONE: case RegisterType.BOOLEAN: return RegisterType.NULL_TYPE; default: assert false; } return destRegisterType; } private void analyzeExecuteInline(@Nonnull AnalyzedInstruction analyzedInstruction) { if (inlineResolver == null) { throw new AnalysisException("Cannot analyze an odexed instruction unless we are deodexing"); } Instruction35mi instruction = (Instruction35mi)analyzedInstruction.instruction; Method resolvedMethod = inlineResolver.resolveExecuteInline(analyzedInstruction); Opcode deodexedOpcode; int acccessFlags = resolvedMethod.getAccessFlags(); if (AccessFlags.STATIC.isSet(acccessFlags)) { deodexedOpcode = Opcode.INVOKE_STATIC; } else if (AccessFlags.PRIVATE.isSet(acccessFlags)) { deodexedOpcode = Opcode.INVOKE_DIRECT; } else { deodexedOpcode = Opcode.INVOKE_VIRTUAL; } Instruction35c deodexedInstruction = new ImmutableInstruction35c(deodexedOpcode, instruction.getRegisterCount(), instruction.getRegisterC(), instruction.getRegisterD(), instruction.getRegisterE(), instruction.getRegisterF(), instruction.getRegisterG(), resolvedMethod); analyzedInstruction.setDeodexedInstruction(deodexedInstruction); analyzeInstruction(analyzedInstruction); } private void analyzeExecuteInlineRange(@Nonnull AnalyzedInstruction analyzedInstruction) { if (inlineResolver == null) { throw new AnalysisException("Cannot analyze an odexed instruction unless we are deodexing"); } Instruction3rmi instruction = (Instruction3rmi)analyzedInstruction.instruction; Method resolvedMethod = inlineResolver.resolveExecuteInline(analyzedInstruction); Opcode deodexedOpcode; int acccessFlags = resolvedMethod.getAccessFlags(); if (AccessFlags.STATIC.isSet(acccessFlags)) { deodexedOpcode = Opcode.INVOKE_STATIC_RANGE; } else if (AccessFlags.PRIVATE.isSet(acccessFlags)) { deodexedOpcode = Opcode.INVOKE_DIRECT_RANGE; } else { deodexedOpcode = Opcode.INVOKE_VIRTUAL_RANGE; } Instruction3rc deodexedInstruction = new ImmutableInstruction3rc(deodexedOpcode, instruction.getStartRegister(), instruction.getRegisterCount(), resolvedMethod); analyzedInstruction.setDeodexedInstruction(deodexedInstruction); analyzeInstruction(analyzedInstruction); } private void analyzeInvokeDirectEmpty(@Nonnull AnalyzedInstruction analyzedInstruction) { analyzeInvokeDirectEmpty(analyzedInstruction, true); } private void analyzeInvokeDirectEmpty(@Nonnull AnalyzedInstruction analyzedInstruction, boolean analyzeResult) { Instruction35c instruction = (Instruction35c)analyzedInstruction.instruction; Instruction35c deodexedInstruction = new ImmutableInstruction35c(Opcode.INVOKE_DIRECT, instruction.getRegisterCount(), instruction.getRegisterC(), instruction.getRegisterD(), instruction.getRegisterE(), instruction.getRegisterF(), instruction.getRegisterG(), instruction.getReference()); analyzedInstruction.setDeodexedInstruction(deodexedInstruction); if (analyzeResult) { analyzeInstruction(analyzedInstruction); } } private void analyzeInvokeObjectInitRange(@Nonnull AnalyzedInstruction analyzedInstruction) { analyzeInvokeObjectInitRange(analyzedInstruction, true); } private void analyzeInvokeObjectInitRange(@Nonnull AnalyzedInstruction analyzedInstruction, boolean analyzeResult) { Instruction3rc instruction = (Instruction3rc)analyzedInstruction.instruction; Instruction deodexedInstruction; int startRegister = instruction.getStartRegister(); // hack: we should be using instruction.getRegisterCount, but some tweaked versions of dalvik appear // to generate invoke-object-init/range instructions with an invalid register count. We know it should // always be 1, so just use that. int registerCount = 1; if (startRegister < 16) { deodexedInstruction = new ImmutableInstruction35c(Opcode.INVOKE_DIRECT, registerCount, startRegister, 0, 0, 0, 0, instruction.getReference()); } else { deodexedInstruction = new ImmutableInstruction3rc(Opcode.INVOKE_DIRECT_RANGE, startRegister, registerCount, instruction.getReference()); } analyzedInstruction.setDeodexedInstruction(deodexedInstruction); if (analyzeResult) { analyzeInstruction(analyzedInstruction); } } private boolean analyzeIputIgetQuick(@Nonnull AnalyzedInstruction analyzedInstruction) { Instruction22cs instruction = (Instruction22cs)analyzedInstruction.instruction; int fieldOffset = instruction.getFieldOffset(); RegisterType objectRegisterType = getAndCheckSourceRegister(analyzedInstruction, instruction.getRegisterB(), ReferenceOrUninitCategories); if (objectRegisterType.category == RegisterType.NULL) { return false; } TypeProto objectRegisterTypeProto = objectRegisterType.type; assert objectRegisterTypeProto != null; TypeProto classTypeProto = classPath.getClass(objectRegisterTypeProto.getType()); FieldReference resolvedField = classTypeProto.getFieldByOffset(fieldOffset); if (resolvedField == null) { throw new AnalysisException("Could not resolve the field in class %s at offset %d", objectRegisterType.type.getType(), fieldOffset); } ClassDef thisClass = classPath.getClassDef(method.getDefiningClass()); if (!TypeUtils.canAccessClass(thisClass.getType(), classPath.getClassDef(resolvedField.getDefiningClass()))) { // the class is not accessible. So we start looking at objectRegisterTypeProto (which may be different // than resolvedField.getDefiningClass()), and walk up the class hierarchy. ClassDef fieldClass = classPath.getClassDef(objectRegisterTypeProto.getType()); while (!TypeUtils.canAccessClass(thisClass.getType(), fieldClass)) { String superclass = fieldClass.getSuperclass(); if (superclass == null) { throw new ExceptionWithContext("Couldn't find accessible class while resolving field %s", ReferenceUtil.getShortFieldDescriptor(resolvedField)); } fieldClass = classPath.getClassDef(superclass); } // fieldClass is now the first accessible class found. Now. we need to make sure that the field is // actually valid for this class FieldReference newResolvedField = classPath.getClass(fieldClass.getType()).getFieldByOffset(fieldOffset); if (newResolvedField == null) { throw new ExceptionWithContext("Couldn't find accessible class while resolving field %s", ReferenceUtil.getShortFieldDescriptor(resolvedField)); } resolvedField = new ImmutableFieldReference(fieldClass.getType(), newResolvedField.getName(), newResolvedField.getType()); } String fieldType = resolvedField.getType(); Opcode opcode = classPath.getFieldInstructionMapper().getAndCheckDeodexedOpcode( fieldType, instruction.getOpcode()); Instruction22c deodexedInstruction = new ImmutableInstruction22c(opcode, (byte)instruction.getRegisterA(), (byte)instruction.getRegisterB(), resolvedField); analyzedInstruction.setDeodexedInstruction(deodexedInstruction); analyzeInstruction(analyzedInstruction); return true; } private boolean analyzeInvokeVirtual(@Nonnull AnalyzedInstruction analyzedInstruction, boolean isRange) { MethodReference targetMethod; if (!normalizeVirtualMethods) { return true; } if (isRange) { Instruction3rc instruction = (Instruction3rc)analyzedInstruction.instruction; targetMethod = (MethodReference)instruction.getReference(); } else { Instruction35c instruction = (Instruction35c)analyzedInstruction.instruction; targetMethod = (MethodReference)instruction.getReference(); } MethodReference replacementMethod = normalizeMethodReference(targetMethod); if (replacementMethod == null || replacementMethod.equals(targetMethod)) { return true; } Instruction deodexedInstruction; if (isRange) { Instruction3rc instruction = (Instruction3rc)analyzedInstruction.instruction; deodexedInstruction = new ImmutableInstruction3rc(instruction.getOpcode(), instruction.getStartRegister(), instruction.getRegisterCount(), replacementMethod); } else { Instruction35c instruction = (Instruction35c)analyzedInstruction.instruction; deodexedInstruction = new ImmutableInstruction35c(instruction.getOpcode(), instruction.getRegisterCount(), instruction.getRegisterC(), instruction.getRegisterD(), instruction.getRegisterE(), instruction.getRegisterF(), instruction.getRegisterG(), replacementMethod); } analyzedInstruction.setDeodexedInstruction(deodexedInstruction); return true; } private boolean analyzeInvokeVirtualQuick(@Nonnull AnalyzedInstruction analyzedInstruction, boolean isSuper, boolean isRange) { int methodIndex; int objectRegister; if (isRange) { Instruction3rms instruction = (Instruction3rms)analyzedInstruction.instruction; methodIndex = instruction.getVtableIndex(); objectRegister = instruction.getStartRegister(); } else { Instruction35ms instruction = (Instruction35ms)analyzedInstruction.instruction; methodIndex = instruction.getVtableIndex(); objectRegister = instruction.getRegisterC(); } RegisterType objectRegisterType = getAndCheckSourceRegister(analyzedInstruction, objectRegister, ReferenceOrUninitCategories); TypeProto objectRegisterTypeProto = objectRegisterType.type; if (objectRegisterType.category == RegisterType.NULL) { return false; } assert objectRegisterTypeProto != null; MethodReference resolvedMethod; if (isSuper) { // invoke-super is only used for the same class that we're currently in TypeProto typeProto = classPath.getClass(method.getDefiningClass()); TypeProto superType; String superclassType = typeProto.getSuperclass(); if (superclassType != null) { superType = classPath.getClass(superclassType); } else { // This is either java.lang.Object, or an UnknownClassProto superType = typeProto; } resolvedMethod = superType.getMethodByVtableIndex(methodIndex); } else { resolvedMethod = objectRegisterTypeProto.getMethodByVtableIndex(methodIndex); } if (resolvedMethod == null) { throw new AnalysisException("Could not resolve the method in class %s at index %d", objectRegisterType.type.getType(), methodIndex); } // no need to check class access for invoke-super. A class can obviously access its superclass. ClassDef thisClass = classPath.getClassDef(method.getDefiningClass()); if (classPath.getClass(resolvedMethod.getDefiningClass()).isInterface()) { resolvedMethod = new ReparentedMethodReference(resolvedMethod, objectRegisterTypeProto.getType()); } else if (!isSuper && !TypeUtils.canAccessClass( thisClass.getType(), classPath.getClassDef(resolvedMethod.getDefiningClass()))) { // the class is not accessible. So we start looking at objectRegisterTypeProto (which may be different // than resolvedMethod.getDefiningClass()), and walk up the class hierarchy. ClassDef methodClass = classPath.getClassDef(objectRegisterTypeProto.getType()); while (!TypeUtils.canAccessClass(thisClass.getType(), methodClass)) { String superclass = methodClass.getSuperclass(); if (superclass == null) { throw new ExceptionWithContext("Couldn't find accessible class while resolving method %s", ReferenceUtil.getMethodDescriptor(resolvedMethod, true)); } methodClass = classPath.getClassDef(superclass); } // methodClass is now the first accessible class found. Now. we need to make sure that the method is // actually valid for this class MethodReference newResolvedMethod = classPath.getClass(methodClass.getType()).getMethodByVtableIndex(methodIndex); if (newResolvedMethod == null) { throw new ExceptionWithContext("Couldn't find accessible class while resolving method %s", ReferenceUtil.getMethodDescriptor(resolvedMethod, true)); } resolvedMethod = newResolvedMethod; resolvedMethod = new ImmutableMethodReference(methodClass.getType(), resolvedMethod.getName(), resolvedMethod.getParameterTypes(), resolvedMethod.getReturnType()); } if (normalizeVirtualMethods) { MethodReference replacementMethod = normalizeMethodReference(resolvedMethod); if (replacementMethod != null) { resolvedMethod = replacementMethod; } } Instruction deodexedInstruction; if (isRange) { Instruction3rms instruction = (Instruction3rms)analyzedInstruction.instruction; Opcode opcode; if (isSuper) { opcode = Opcode.INVOKE_SUPER_RANGE; } else { opcode = Opcode.INVOKE_VIRTUAL_RANGE; } deodexedInstruction = new ImmutableInstruction3rc(opcode, instruction.getStartRegister(), instruction.getRegisterCount(), resolvedMethod); } else { Instruction35ms instruction = (Instruction35ms)analyzedInstruction.instruction; Opcode opcode; if (isSuper) { opcode = Opcode.INVOKE_SUPER; } else { opcode = Opcode.INVOKE_VIRTUAL; } deodexedInstruction = new ImmutableInstruction35c(opcode, instruction.getRegisterCount(), instruction.getRegisterC(), instruction.getRegisterD(), instruction.getRegisterE(), instruction.getRegisterF(), instruction.getRegisterG(), resolvedMethod); } analyzedInstruction.setDeodexedInstruction(deodexedInstruction); analyzeInstruction(analyzedInstruction); return true; } private boolean analyzePutGetVolatile(@Nonnull AnalyzedInstruction analyzedInstruction) { return analyzePutGetVolatile(analyzedInstruction, true); } private boolean analyzePutGetVolatile(@Nonnull AnalyzedInstruction analyzedInstruction, boolean analyzeResult) { FieldReference field = (FieldReference)((ReferenceInstruction)analyzedInstruction.instruction).getReference(); String fieldType = field.getType(); Opcode originalOpcode = analyzedInstruction.instruction.getOpcode(); Opcode opcode = classPath.getFieldInstructionMapper().getAndCheckDeodexedOpcode( fieldType, originalOpcode); Instruction deodexedInstruction; if (originalOpcode.isStaticFieldAccessor()) { OneRegisterInstruction instruction = (OneRegisterInstruction)analyzedInstruction.instruction; deodexedInstruction = new ImmutableInstruction21c(opcode, instruction.getRegisterA(), field); } else { TwoRegisterInstruction instruction = (TwoRegisterInstruction)analyzedInstruction.instruction; deodexedInstruction = new ImmutableInstruction22c(opcode, instruction.getRegisterA(), instruction.getRegisterB(), field); } analyzedInstruction.setDeodexedInstruction(deodexedInstruction); if (analyzeResult) { analyzeInstruction(analyzedInstruction); } return true; } @Nonnull private static RegisterType getAndCheckSourceRegister(@Nonnull AnalyzedInstruction analyzedInstruction, int registerNumber, BitSet validCategories) { assert registerNumber >= 0 && registerNumber < analyzedInstruction.postRegisterMap.length; RegisterType registerType = analyzedInstruction.getPreInstructionRegisterType(registerNumber); checkRegister(registerType, registerNumber, validCategories); if (validCategories == WideLowCategories) { checkRegister(registerType, registerNumber, WideLowCategories); checkWidePair(registerNumber, analyzedInstruction); RegisterType secondRegisterType = analyzedInstruction.getPreInstructionRegisterType(registerNumber + 1); checkRegister(secondRegisterType, registerNumber+1, WideHighCategories); } return registerType; } private static void checkRegister(RegisterType registerType, int registerNumber, BitSet validCategories) { if (!validCategories.get(registerType.category)) { throw new AnalysisException(String.format("Invalid register type %s for register v%d.", registerType.toString(), registerNumber)); } } private static void checkWidePair(int registerNumber, AnalyzedInstruction analyzedInstruction) { if (registerNumber + 1 >= analyzedInstruction.postRegisterMap.length) { throw new AnalysisException(String.format("v%d cannot be used as the first register in a wide register" + "pair because it is the last register.", registerNumber)); } } @Nullable private MethodReference normalizeMethodReference(@Nonnull MethodReference methodRef) { TypeProto typeProto = classPath.getClass(methodRef.getDefiningClass()); int methodIndex; try { methodIndex = typeProto.findMethodIndexInVtable(methodRef); } catch (UnresolvedClassException ex) { return null; } if (methodIndex < 0) { return null; } ClassProto thisClass = (ClassProto)classPath.getClass(method.getDefiningClass()); Method replacementMethod = typeProto.getMethodByVtableIndex(methodIndex); assert replacementMethod != null; while (true) { String superType = typeProto.getSuperclass(); if (superType == null) { break; } typeProto = classPath.getClass(superType); Method resolvedMethod = typeProto.getMethodByVtableIndex(methodIndex); if (resolvedMethod == null) { break; } if (!resolvedMethod.equals(replacementMethod)) { if (!AnalyzedMethodUtil.canAccess(thisClass, resolvedMethod, false, false, true)) { continue; } replacementMethod = resolvedMethod; } } return replacementMethod; } private static class ReparentedMethodReference extends BaseMethodReference { private final MethodReference baseReference; private final String definingClass; public ReparentedMethodReference(MethodReference baseReference, String definingClass) { this.baseReference = baseReference; this.definingClass = definingClass; } @Override @Nonnull public String getName() { return baseReference.getName(); } @Override @Nonnull public List<? extends CharSequence> getParameterTypes() { return baseReference.getParameterTypes(); } @Override @Nonnull public String getReturnType() { return baseReference.getReturnType(); } @Nonnull @Override public String getDefiningClass() { return definingClass; } } }