ASM: a very small and fast Java bytecode manipulation framework
Copyright (c) 2000-2011 INRIA, France Telecom
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
/***
* ASM: a very small and fast Java bytecode manipulation framework
* Copyright (c) 2000-2011 INRIA, France Telecom
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.objectweb.asm.commons;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.objectweb.asm.Handle;
import org.objectweb.asm.Label;
import org.objectweb.asm.MethodVisitor;
import org.objectweb.asm.Opcodes;
import org.objectweb.asm.Type;
A MethodVisitor
that keeps track of stack map frame changes between visitFrame
calls. This adapter must be used with the ClassReader.EXPAND_FRAMES
option. Each visitX instruction delegates to the next visitor in the chain, if any, and then simulates the effect of this instruction on the stack map frame, represented by locals
and stack
. The next visitor in the chain can get the state of the stack map frame before each instruction
by reading the value of these fields in its visitX methods (this requires a reference to the AnalyzerAdapter that is before it in the chain). If this adapter is used with a class that does not contain stack map table attributes (i.e., pre Java 6 classes) then this adapter may not be able to compute the stack map frame for each instruction. In this case no exception is thrown but the locals
and stack
fields will be null for these instructions. Author: Eric Bruneton
/**
* A {@link MethodVisitor} that keeps track of stack map frame changes between
* {@link #visitFrame(int, int, Object[], int, Object[]) visitFrame} calls. This
* adapter must be used with the
* {@link org.objectweb.asm.ClassReader#EXPAND_FRAMES} option. Each
* visit<i>X</i> instruction delegates to the next visitor in the chain, if any,
* and then simulates the effect of this instruction on the stack map frame,
* represented by {@link #locals} and {@link #stack}. The next visitor in the
* chain can get the state of the stack map frame <i>before</i> each instruction
* by reading the value of these fields in its visit<i>X</i> methods (this
* requires a reference to the AnalyzerAdapter that is before it in the chain).
* If this adapter is used with a class that does not contain stack map table
* attributes (i.e., pre Java 6 classes) then this adapter may not be able to
* compute the stack map frame for each instruction. In this case no exception
* is thrown but the {@link #locals} and {@link #stack} fields will be null for
* these instructions.
*
* @author Eric Bruneton
*/
public class AnalyzerAdapter extends MethodVisitor {
List
of the local variable slots for current execution frame. Primitive types are represented by Opcodes.TOP
, Opcodes.INTEGER
, Opcodes.FLOAT
, Opcodes.LONG
, Opcodes.DOUBLE
,Opcodes.NULL
or Opcodes.UNINITIALIZED_THIS
(long and double are represented by two elements, the second one being TOP). Reference types are represented by String objects (representing internal names), and uninitialized types by Label objects (this label designates the NEW instruction that created this uninitialized value). This field is null for unreachable
instructions.
/**
* <code>List</code> of the local variable slots for current execution
* frame. Primitive types are represented by {@link Opcodes#TOP},
* {@link Opcodes#INTEGER}, {@link Opcodes#FLOAT}, {@link Opcodes#LONG},
* {@link Opcodes#DOUBLE},{@link Opcodes#NULL} or
* {@link Opcodes#UNINITIALIZED_THIS} (long and double are represented by
* two elements, the second one being TOP). Reference types are represented
* by String objects (representing internal names), and uninitialized types
* by Label objects (this label designates the NEW instruction that created
* this uninitialized value). This field is <tt>null</tt> for unreachable
* instructions.
*/
public List<Object> locals;
List
of the operand stack slots for current execution frame. Primitive types are represented by Opcodes.TOP
, Opcodes.INTEGER
, Opcodes.FLOAT
, Opcodes.LONG
, Opcodes.DOUBLE
,Opcodes.NULL
or Opcodes.UNINITIALIZED_THIS
(long and double are represented by two elements, the second one being TOP). Reference types are represented by String objects (representing internal names), and uninitialized types by Label objects (this label designates the NEW instruction that created this uninitialized value). This field is null for unreachable
instructions.
/**
* <code>List</code> of the operand stack slots for current execution frame.
* Primitive types are represented by {@link Opcodes#TOP},
* {@link Opcodes#INTEGER}, {@link Opcodes#FLOAT}, {@link Opcodes#LONG},
* {@link Opcodes#DOUBLE},{@link Opcodes#NULL} or
* {@link Opcodes#UNINITIALIZED_THIS} (long and double are represented by
* two elements, the second one being TOP). Reference types are represented
* by String objects (representing internal names), and uninitialized types
* by Label objects (this label designates the NEW instruction that created
* this uninitialized value). This field is <tt>null</tt> for unreachable
* instructions.
*/
public List<Object> stack;
The labels that designate the next instruction to be visited. May be
null.
/**
* The labels that designate the next instruction to be visited. May be
* <tt>null</tt>.
*/
private List<Label> labels;
Information about uninitialized types in the current execution frame.
This map associates internal names to Label objects. Each label
designates a NEW instruction that created the currently uninitialized
types, and the associated internal name represents the NEW operand, i.e.
the final, initialized type value.
/**
* Information about uninitialized types in the current execution frame.
* This map associates internal names to Label objects. Each label
* designates a NEW instruction that created the currently uninitialized
* types, and the associated internal name represents the NEW operand, i.e.
* the final, initialized type value.
*/
public Map<Object, Object> uninitializedTypes;
The maximum stack size of this method.
/**
* The maximum stack size of this method.
*/
private int maxStack;
The maximum number of local variables of this method.
/**
* The maximum number of local variables of this method.
*/
private int maxLocals;
The owner's class name.
/**
* The owner's class name.
*/
private String owner;
Creates a new AnalyzerAdapter
. Subclasses must not use this
constructor. Instead, they must use the AnalyzerAdapter(int, String, int, String, String, MethodVisitor)
version. Params:
/**
* Creates a new {@link AnalyzerAdapter}. <i>Subclasses must not use this
* constructor</i>. Instead, they must use the
* {@link #AnalyzerAdapter(int, String, int, String, String, MethodVisitor)}
* version.
*
* @param owner
* the owner's class name.
* @param access
* the method's access flags (see {@link Opcodes}).
* @param name
* the method's name.
* @param desc
* the method's descriptor (see {@link Type Type}).
* @param mv
* the method visitor to which this adapter delegates calls. May
* be <tt>null</tt>.
*/
public AnalyzerAdapter(final String owner, final int access,
final String name, final String desc, final MethodVisitor mv) {
this(Opcodes.ASM4, owner, access, name, desc, mv);
}
Creates a new AnalyzerAdapter
. Params: - api – the ASM API version implemented by this visitor. Must be one of
Opcodes.ASM4
. - owner –
the owner's class name.
- access – the method's access flags (see
Opcodes
). - name –
the method's name.
- desc – the method's descriptor (see
Type
). - mv –
the method visitor to which this adapter delegates calls. May
be null.
/**
* Creates a new {@link AnalyzerAdapter}.
*
* @param api
* the ASM API version implemented by this visitor. Must be one
* of {@link Opcodes#ASM4}.
* @param owner
* the owner's class name.
* @param access
* the method's access flags (see {@link Opcodes}).
* @param name
* the method's name.
* @param desc
* the method's descriptor (see {@link Type Type}).
* @param mv
* the method visitor to which this adapter delegates calls. May
* be <tt>null</tt>.
*/
protected AnalyzerAdapter(final int api, final String owner,
final int access, final String name, final String desc,
final MethodVisitor mv) {
super(api, mv);
this.owner = owner;
locals = new ArrayList<Object>();
stack = new ArrayList<Object>();
uninitializedTypes = new HashMap<Object, Object>();
if ((access & Opcodes.ACC_STATIC) == 0) {
if ("<init>".equals(name)) {
locals.add(Opcodes.UNINITIALIZED_THIS);
} else {
locals.add(owner);
}
}
Type[] types = Type.getArgumentTypes(desc);
for (int i = 0; i < types.length; ++i) {
Type type = types[i];
switch (type.getSort()) {
case Type.BOOLEAN:
case Type.CHAR:
case Type.BYTE:
case Type.SHORT:
case Type.INT:
locals.add(Opcodes.INTEGER);
break;
case Type.FLOAT:
locals.add(Opcodes.FLOAT);
break;
case Type.LONG:
locals.add(Opcodes.LONG);
locals.add(Opcodes.TOP);
break;
case Type.DOUBLE:
locals.add(Opcodes.DOUBLE);
locals.add(Opcodes.TOP);
break;
case Type.ARRAY:
locals.add(types[i].getDescriptor());
break;
// case Type.OBJECT:
default:
locals.add(types[i].getInternalName());
}
}
}
@Override
public void visitFrame(final int type, final int nLocal,
final Object[] local, final int nStack, final Object[] stack) {
if (type != Opcodes.F_NEW) { // uncompressed frame
throw new IllegalStateException(
"ClassReader.accept() should be called with EXPAND_FRAMES flag");
}
if (mv != null) {
mv.visitFrame(type, nLocal, local, nStack, stack);
}
if (this.locals != null) {
this.locals.clear();
this.stack.clear();
} else {
this.locals = new ArrayList<Object>();
this.stack = new ArrayList<Object>();
}
visitFrameTypes(nLocal, local, this.locals);
visitFrameTypes(nStack, stack, this.stack);
maxStack = Math.max(maxStack, this.stack.size());
}
private static void visitFrameTypes(final int n, final Object[] types,
final List<Object> result) {
for (int i = 0; i < n; ++i) {
Object type = types[i];
result.add(type);
if (type == Opcodes.LONG || type == Opcodes.DOUBLE) {
result.add(Opcodes.TOP);
}
}
}
@Override
public void visitInsn(final int opcode) {
if (mv != null) {
mv.visitInsn(opcode);
}
execute(opcode, 0, null);
if ((opcode >= Opcodes.IRETURN && opcode <= Opcodes.RETURN)
|| opcode == Opcodes.ATHROW) {
this.locals = null;
this.stack = null;
}
}
@Override
public void visitIntInsn(final int opcode, final int operand) {
if (mv != null) {
mv.visitIntInsn(opcode, operand);
}
execute(opcode, operand, null);
}
@Override
public void visitVarInsn(final int opcode, final int var) {
if (mv != null) {
mv.visitVarInsn(opcode, var);
}
execute(opcode, var, null);
}
@Override
public void visitTypeInsn(final int opcode, final String type) {
if (opcode == Opcodes.NEW) {
if (labels == null) {
Label l = new Label();
labels = new ArrayList<Label>(3);
labels.add(l);
if (mv != null) {
mv.visitLabel(l);
}
}
for (int i = 0; i < labels.size(); ++i) {
uninitializedTypes.put(labels.get(i), type);
}
}
if (mv != null) {
mv.visitTypeInsn(opcode, type);
}
execute(opcode, 0, type);
}
@Override
public void visitFieldInsn(final int opcode, final String owner,
final String name, final String desc) {
if (mv != null) {
mv.visitFieldInsn(opcode, owner, name, desc);
}
execute(opcode, 0, desc);
}
@Override
public void visitMethodInsn(final int opcode, final String owner,
final String name, final String desc) {
if (mv != null) {
mv.visitMethodInsn(opcode, owner, name, desc);
}
if (this.locals == null) {
labels = null;
return;
}
pop(desc);
if (opcode != Opcodes.INVOKESTATIC) {
Object t = pop();
if (opcode == Opcodes.INVOKESPECIAL && name.charAt(0) == '<') {
Object u;
if (t == Opcodes.UNINITIALIZED_THIS) {
u = this.owner;
} else {
u = uninitializedTypes.get(t);
}
for (int i = 0; i < locals.size(); ++i) {
if (locals.get(i) == t) {
locals.set(i, u);
}
}
for (int i = 0; i < stack.size(); ++i) {
if (stack.get(i) == t) {
stack.set(i, u);
}
}
}
}
pushDesc(desc);
labels = null;
}
@Override
public void visitInvokeDynamicInsn(String name, String desc, Handle bsm,
Object... bsmArgs) {
if (mv != null) {
mv.visitInvokeDynamicInsn(name, desc, bsm, bsmArgs);
}
if (this.locals == null) {
labels = null;
return;
}
pop(desc);
pushDesc(desc);
labels = null;
}
@Override
public void visitJumpInsn(final int opcode, final Label label) {
if (mv != null) {
mv.visitJumpInsn(opcode, label);
}
execute(opcode, 0, null);
if (opcode == Opcodes.GOTO) {
this.locals = null;
this.stack = null;
}
}
@Override
public void visitLabel(final Label label) {
if (mv != null) {
mv.visitLabel(label);
}
if (labels == null) {
labels = new ArrayList<Label>(3);
}
labels.add(label);
}
@Override
public void visitLdcInsn(final Object cst) {
if (mv != null) {
mv.visitLdcInsn(cst);
}
if (this.locals == null) {
labels = null;
return;
}
if (cst instanceof Integer) {
push(Opcodes.INTEGER);
} else if (cst instanceof Long) {
push(Opcodes.LONG);
push(Opcodes.TOP);
} else if (cst instanceof Float) {
push(Opcodes.FLOAT);
} else if (cst instanceof Double) {
push(Opcodes.DOUBLE);
push(Opcodes.TOP);
} else if (cst instanceof String) {
push("java/lang/String");
} else if (cst instanceof Type) {
int sort = ((Type) cst).getSort();
if (sort == Type.OBJECT || sort == Type.ARRAY) {
push("java/lang/Class");
} else if (sort == Type.METHOD) {
push("java/lang/invoke/MethodType");
} else {
throw new IllegalArgumentException();
}
} else if (cst instanceof Handle) {
push("java/lang/invoke/MethodHandle");
} else {
throw new IllegalArgumentException();
}
labels = null;
}
@Override
public void visitIincInsn(final int var, final int increment) {
if (mv != null) {
mv.visitIincInsn(var, increment);
}
execute(Opcodes.IINC, var, null);
}
@Override
public void visitTableSwitchInsn(final int min, final int max,
final Label dflt, final Label... labels) {
if (mv != null) {
mv.visitTableSwitchInsn(min, max, dflt, labels);
}
execute(Opcodes.TABLESWITCH, 0, null);
this.locals = null;
this.stack = null;
}
@Override
public void visitLookupSwitchInsn(final Label dflt, final int[] keys,
final Label[] labels) {
if (mv != null) {
mv.visitLookupSwitchInsn(dflt, keys, labels);
}
execute(Opcodes.LOOKUPSWITCH, 0, null);
this.locals = null;
this.stack = null;
}
@Override
public void visitMultiANewArrayInsn(final String desc, final int dims) {
if (mv != null) {
mv.visitMultiANewArrayInsn(desc, dims);
}
execute(Opcodes.MULTIANEWARRAY, dims, desc);
}
@Override
public void visitMaxs(final int maxStack, final int maxLocals) {
if (mv != null) {
this.maxStack = Math.max(this.maxStack, maxStack);
this.maxLocals = Math.max(this.maxLocals, maxLocals);
mv.visitMaxs(this.maxStack, this.maxLocals);
}
}
// ------------------------------------------------------------------------
private Object get(final int local) {
maxLocals = Math.max(maxLocals, local);
return local < locals.size() ? locals.get(local) : Opcodes.TOP;
}
private void set(final int local, final Object type) {
maxLocals = Math.max(maxLocals, local);
while (local >= locals.size()) {
locals.add(Opcodes.TOP);
}
locals.set(local, type);
}
private void push(final Object type) {
stack.add(type);
maxStack = Math.max(maxStack, stack.size());
}
private void pushDesc(final String desc) {
int index = desc.charAt(0) == '(' ? desc.indexOf(')') + 1 : 0;
switch (desc.charAt(index)) {
case 'V':
return;
case 'Z':
case 'C':
case 'B':
case 'S':
case 'I':
push(Opcodes.INTEGER);
return;
case 'F':
push(Opcodes.FLOAT);
return;
case 'J':
push(Opcodes.LONG);
push(Opcodes.TOP);
return;
case 'D':
push(Opcodes.DOUBLE);
push(Opcodes.TOP);
return;
case '[':
if (index == 0) {
push(desc);
} else {
push(desc.substring(index, desc.length()));
}
break;
// case 'L':
default:
if (index == 0) {
push(desc.substring(1, desc.length() - 1));
} else {
push(desc.substring(index + 1, desc.length() - 1));
}
}
}
private Object pop() {
return stack.remove(stack.size() - 1);
}
private void pop(final int n) {
int size = stack.size();
int end = size - n;
for (int i = size - 1; i >= end; --i) {
stack.remove(i);
}
}
private void pop(final String desc) {
char c = desc.charAt(0);
if (c == '(') {
int n = 0;
Type[] types = Type.getArgumentTypes(desc);
for (int i = 0; i < types.length; ++i) {
n += types[i].getSize();
}
pop(n);
} else if (c == 'J' || c == 'D') {
pop(2);
} else {
pop(1);
}
}
private void execute(final int opcode, final int iarg, final String sarg) {
if (this.locals == null) {
labels = null;
return;
}
Object t1, t2, t3, t4;
switch (opcode) {
case Opcodes.NOP:
case Opcodes.INEG:
case Opcodes.LNEG:
case Opcodes.FNEG:
case Opcodes.DNEG:
case Opcodes.I2B:
case Opcodes.I2C:
case Opcodes.I2S:
case Opcodes.GOTO:
case Opcodes.RETURN:
break;
case Opcodes.ACONST_NULL:
push(Opcodes.NULL);
break;
case Opcodes.ICONST_M1:
case Opcodes.ICONST_0:
case Opcodes.ICONST_1:
case Opcodes.ICONST_2:
case Opcodes.ICONST_3:
case Opcodes.ICONST_4:
case Opcodes.ICONST_5:
case Opcodes.BIPUSH:
case Opcodes.SIPUSH:
push(Opcodes.INTEGER);
break;
case Opcodes.LCONST_0:
case Opcodes.LCONST_1:
push(Opcodes.LONG);
push(Opcodes.TOP);
break;
case Opcodes.FCONST_0:
case Opcodes.FCONST_1:
case Opcodes.FCONST_2:
push(Opcodes.FLOAT);
break;
case Opcodes.DCONST_0:
case Opcodes.DCONST_1:
push(Opcodes.DOUBLE);
push(Opcodes.TOP);
break;
case Opcodes.ILOAD:
case Opcodes.FLOAD:
case Opcodes.ALOAD:
push(get(iarg));
break;
case Opcodes.LLOAD:
case Opcodes.DLOAD:
push(get(iarg));
push(Opcodes.TOP);
break;
case Opcodes.IALOAD:
case Opcodes.BALOAD:
case Opcodes.CALOAD:
case Opcodes.SALOAD:
pop(2);
push(Opcodes.INTEGER);
break;
case Opcodes.LALOAD:
case Opcodes.D2L:
pop(2);
push(Opcodes.LONG);
push(Opcodes.TOP);
break;
case Opcodes.FALOAD:
pop(2);
push(Opcodes.FLOAT);
break;
case Opcodes.DALOAD:
case Opcodes.L2D:
pop(2);
push(Opcodes.DOUBLE);
push(Opcodes.TOP);
break;
case Opcodes.AALOAD:
pop(1);
t1 = pop();
if (t1 instanceof String) {
pushDesc(((String) t1).substring(1));
} else {
push("java/lang/Object");
}
break;
case Opcodes.ISTORE:
case Opcodes.FSTORE:
case Opcodes.ASTORE:
t1 = pop();
set(iarg, t1);
if (iarg > 0) {
t2 = get(iarg - 1);
if (t2 == Opcodes.LONG || t2 == Opcodes.DOUBLE) {
set(iarg - 1, Opcodes.TOP);
}
}
break;
case Opcodes.LSTORE:
case Opcodes.DSTORE:
pop(1);
t1 = pop();
set(iarg, t1);
set(iarg + 1, Opcodes.TOP);
if (iarg > 0) {
t2 = get(iarg - 1);
if (t2 == Opcodes.LONG || t2 == Opcodes.DOUBLE) {
set(iarg - 1, Opcodes.TOP);
}
}
break;
case Opcodes.IASTORE:
case Opcodes.BASTORE:
case Opcodes.CASTORE:
case Opcodes.SASTORE:
case Opcodes.FASTORE:
case Opcodes.AASTORE:
pop(3);
break;
case Opcodes.LASTORE:
case Opcodes.DASTORE:
pop(4);
break;
case Opcodes.POP:
case Opcodes.IFEQ:
case Opcodes.IFNE:
case Opcodes.IFLT:
case Opcodes.IFGE:
case Opcodes.IFGT:
case Opcodes.IFLE:
case Opcodes.IRETURN:
case Opcodes.FRETURN:
case Opcodes.ARETURN:
case Opcodes.TABLESWITCH:
case Opcodes.LOOKUPSWITCH:
case Opcodes.ATHROW:
case Opcodes.MONITORENTER:
case Opcodes.MONITOREXIT:
case Opcodes.IFNULL:
case Opcodes.IFNONNULL:
pop(1);
break;
case Opcodes.POP2:
case Opcodes.IF_ICMPEQ:
case Opcodes.IF_ICMPNE:
case Opcodes.IF_ICMPLT:
case Opcodes.IF_ICMPGE:
case Opcodes.IF_ICMPGT:
case Opcodes.IF_ICMPLE:
case Opcodes.IF_ACMPEQ:
case Opcodes.IF_ACMPNE:
case Opcodes.LRETURN:
case Opcodes.DRETURN:
pop(2);
break;
case Opcodes.DUP:
t1 = pop();
push(t1);
push(t1);
break;
case Opcodes.DUP_X1:
t1 = pop();
t2 = pop();
push(t1);
push(t2);
push(t1);
break;
case Opcodes.DUP_X2:
t1 = pop();
t2 = pop();
t3 = pop();
push(t1);
push(t3);
push(t2);
push(t1);
break;
case Opcodes.DUP2:
t1 = pop();
t2 = pop();
push(t2);
push(t1);
push(t2);
push(t1);
break;
case Opcodes.DUP2_X1:
t1 = pop();
t2 = pop();
t3 = pop();
push(t2);
push(t1);
push(t3);
push(t2);
push(t1);
break;
case Opcodes.DUP2_X2:
t1 = pop();
t2 = pop();
t3 = pop();
t4 = pop();
push(t2);
push(t1);
push(t4);
push(t3);
push(t2);
push(t1);
break;
case Opcodes.SWAP:
t1 = pop();
t2 = pop();
push(t1);
push(t2);
break;
case Opcodes.IADD:
case Opcodes.ISUB:
case Opcodes.IMUL:
case Opcodes.IDIV:
case Opcodes.IREM:
case Opcodes.IAND:
case Opcodes.IOR:
case Opcodes.IXOR:
case Opcodes.ISHL:
case Opcodes.ISHR:
case Opcodes.IUSHR:
case Opcodes.L2I:
case Opcodes.D2I:
case Opcodes.FCMPL:
case Opcodes.FCMPG:
pop(2);
push(Opcodes.INTEGER);
break;
case Opcodes.LADD:
case Opcodes.LSUB:
case Opcodes.LMUL:
case Opcodes.LDIV:
case Opcodes.LREM:
case Opcodes.LAND:
case Opcodes.LOR:
case Opcodes.LXOR:
pop(4);
push(Opcodes.LONG);
push(Opcodes.TOP);
break;
case Opcodes.FADD:
case Opcodes.FSUB:
case Opcodes.FMUL:
case Opcodes.FDIV:
case Opcodes.FREM:
case Opcodes.L2F:
case Opcodes.D2F:
pop(2);
push(Opcodes.FLOAT);
break;
case Opcodes.DADD:
case Opcodes.DSUB:
case Opcodes.DMUL:
case Opcodes.DDIV:
case Opcodes.DREM:
pop(4);
push(Opcodes.DOUBLE);
push(Opcodes.TOP);
break;
case Opcodes.LSHL:
case Opcodes.LSHR:
case Opcodes.LUSHR:
pop(3);
push(Opcodes.LONG);
push(Opcodes.TOP);
break;
case Opcodes.IINC:
set(iarg, Opcodes.INTEGER);
break;
case Opcodes.I2L:
case Opcodes.F2L:
pop(1);
push(Opcodes.LONG);
push(Opcodes.TOP);
break;
case Opcodes.I2F:
pop(1);
push(Opcodes.FLOAT);
break;
case Opcodes.I2D:
case Opcodes.F2D:
pop(1);
push(Opcodes.DOUBLE);
push(Opcodes.TOP);
break;
case Opcodes.F2I:
case Opcodes.ARRAYLENGTH:
case Opcodes.INSTANCEOF:
pop(1);
push(Opcodes.INTEGER);
break;
case Opcodes.LCMP:
case Opcodes.DCMPL:
case Opcodes.DCMPG:
pop(4);
push(Opcodes.INTEGER);
break;
case Opcodes.JSR:
case Opcodes.RET:
throw new RuntimeException("JSR/RET are not supported");
case Opcodes.GETSTATIC:
pushDesc(sarg);
break;
case Opcodes.PUTSTATIC:
pop(sarg);
break;
case Opcodes.GETFIELD:
pop(1);
pushDesc(sarg);
break;
case Opcodes.PUTFIELD:
pop(sarg);
pop();
break;
case Opcodes.NEW:
push(labels.get(0));
break;
case Opcodes.NEWARRAY:
pop();
switch (iarg) {
case Opcodes.T_BOOLEAN:
pushDesc("[Z");
break;
case Opcodes.T_CHAR:
pushDesc("[C");
break;
case Opcodes.T_BYTE:
pushDesc("[B");
break;
case Opcodes.T_SHORT:
pushDesc("[S");
break;
case Opcodes.T_INT:
pushDesc("[I");
break;
case Opcodes.T_FLOAT:
pushDesc("[F");
break;
case Opcodes.T_DOUBLE:
pushDesc("[D");
break;
// case Opcodes.T_LONG:
default:
pushDesc("[J");
break;
}
break;
case Opcodes.ANEWARRAY:
pop();
pushDesc("[" + Type.getObjectType(sarg));
break;
case Opcodes.CHECKCAST:
pop();
pushDesc(Type.getObjectType(sarg).getDescriptor());
break;
// case Opcodes.MULTIANEWARRAY:
default:
pop(iarg);
pushDesc(sarg);
break;
}
labels = null;
}
}