/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.javafx.geom;

import java.util.NoSuchElementException;

import com.sun.javafx.geom.transform.BaseTransform;

A utility class to iterate over the path segments of an rounded rectangle through the PathIterator interface.
Version:10 Feb 1997
/** * A utility class to iterate over the path segments of an rounded rectangle * through the PathIterator interface. * * @version 10 Feb 1997 */
class RoundRectIterator implements PathIterator { double x, y, w, h, aw, ah; BaseTransform transform; int index; RoundRectIterator(RoundRectangle2D rr, BaseTransform tx) { this.x = rr.x; this.y = rr.y; this.w = rr.width; this.h = rr.height; this.aw = Math.min(w, Math.abs(rr.arcWidth)); this.ah = Math.min(h, Math.abs(rr.arcHeight)); this.transform = tx; if (aw < 0 || ah < 0) { // Don't draw anything... index = ctrlpts.length; } }
Return the winding rule for determining the insideness of the path.
See Also:
/** * Return the winding rule for determining the insideness of the * path. * @see #WIND_EVEN_ODD * @see #WIND_NON_ZERO */
public int getWindingRule() { return WIND_NON_ZERO; }
Tests if there are more points to read.
Returns:true if there are more points to read
/** * Tests if there are more points to read. * @return true if there are more points to read */
public boolean isDone() { return index >= ctrlpts.length; }
Moves the iterator to the next segment of the path forwards along the primary direction of traversal as long as there are more points in that direction.
/** * Moves the iterator to the next segment of the path forwards * along the primary direction of traversal as long as there are * more points in that direction. */
public void next() { ++index; if (index < ctrlpts.length && aw == 0 && ah == 0 && types[index] == SEG_CUBICTO) { // skip empty CUBIC segments index++; } } private static final double angle = Math.PI / 4.0; private static final double a = 1.0 - Math.cos(angle); private static final double b = Math.tan(angle); private static final double c = Math.sqrt(1.0 + b * b) - 1 + a; private static final double cv = 4.0 / 3.0 * a * b / c; private static final double acv = (1.0 - cv) / 2.0; // For each array: // 4 values for each point {v0, v1, v2, v3}: // point = (x + v0 * w + v1 * arcWidth, // y + v2 * h + v3 * arcHeight); private static final double ctrlpts[][] = { { 0.0, 0.0, 0.0, 0.5 }, { 0.0, 0.0, 1.0, -0.5 }, { 0.0, 0.0, 1.0, -acv, 0.0, acv, 1.0, 0.0, 0.0, 0.5, 1.0, 0.0 }, { 1.0, -0.5, 1.0, 0.0 }, { 1.0, -acv, 1.0, 0.0, 1.0, 0.0, 1.0, -acv, 1.0, 0.0, 1.0, -0.5 }, { 1.0, 0.0, 0.0, 0.5 }, { 1.0, 0.0, 0.0, acv, 1.0, -acv, 0.0, 0.0, 1.0, -0.5, 0.0, 0.0 }, { 0.0, 0.5, 0.0, 0.0 }, { 0.0, acv, 0.0, 0.0, 0.0, 0.0, 0.0, acv, 0.0, 0.0, 0.0, 0.5 }, {}, }; private static final int types[] = { SEG_MOVETO, SEG_LINETO, SEG_CUBICTO, SEG_LINETO, SEG_CUBICTO, SEG_LINETO, SEG_CUBICTO, SEG_LINETO, SEG_CUBICTO, SEG_CLOSE, };
Returns the coordinates and type of the current path segment in the iteration. The return value is the path segment type: SEG_MOVETO, SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or SEG_CLOSE. A float array of length 6 must be passed in and may be used to store the coordinates of the point(s). Each point is stored as a pair of float x,y coordinates. SEG_MOVETO and SEG_LINETO types will return one point, SEG_QUADTO will return two points, SEG_CUBICTO will return 3 points and SEG_CLOSE will not return any points.
See Also:
/** * Returns the coordinates and type of the current path segment in * the iteration. * The return value is the path segment type: * SEG_MOVETO, SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or SEG_CLOSE. * A float array of length 6 must be passed in and may be used to * store the coordinates of the point(s). * Each point is stored as a pair of float x,y coordinates. * SEG_MOVETO and SEG_LINETO types will return one point, * SEG_QUADTO will return two points, * SEG_CUBICTO will return 3 points * and SEG_CLOSE will not return any points. * @see #SEG_MOVETO * @see #SEG_LINETO * @see #SEG_QUADTO * @see #SEG_CUBICTO * @see #SEG_CLOSE */
public int currentSegment(float[] coords) { if (isDone()) { throw new NoSuchElementException("roundrect iterator out of bounds"); } double ctrls[] = ctrlpts[index]; int nc = 0; for (int i = 0; i < ctrls.length; i += 4) { coords[nc++] = (float) (x + ctrls[i + 0] * w + ctrls[i + 1] * aw); coords[nc++] = (float) (y + ctrls[i + 2] * h + ctrls[i + 3] * ah); } if (transform != null) { transform.transform(coords, 0, coords, 0, nc / 2); } return types[index]; } }