/*
 * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.marlin;

import com.sun.javafx.geom.PathConsumer2D;
import java.util.Arrays;
import com.sun.marlin.stats.Histogram;
import com.sun.marlin.stats.StatLong;

final class Helpers implements MarlinConst {

    private Helpers() {
        throw new Error("This is a non instantiable class");
    }

    static boolean within(final float x, final float y, final float err) {
        final float d = y - x;
        return (d <= err && d >= -err);
    }

    static boolean within(final double x, final double y, final double err) {
        final double d = y - x;
        return (d <= err && d >= -err);
    }

    static float evalCubic(final float a, final float b,
                           final float c, final float d,
                           final float t)
    {
        return t * (t * (t * a + b) + c) + d;
    }

    static float evalQuad(final float a, final float b,
                          final float c, final float t)
    {
        return t * (t * a + b) + c;
    }

    static int quadraticRoots(final float a, final float b, final float c,
                              final float[] zeroes, final int off)
    {
        int ret = off;
        if (a != 0.0f) {
            final float dis = b*b - 4.0f * a * c;
            if (dis > 0.0f) {
                final float sqrtDis = (float) Math.sqrt(dis);
                // depending on the sign of b we use a slightly different
                // algorithm than the traditional one to find one of the roots
                // so we can avoid adding numbers of different signs (which
                // might result in loss of precision).
                if (b >= 0.0f) {
                    zeroes[ret++] = (2.0f * c) / (-b - sqrtDis);
                    zeroes[ret++] = (-b - sqrtDis) / (2.0f * a);
                } else {
                    zeroes[ret++] = (-b + sqrtDis) / (2.0f * a);
                    zeroes[ret++] = (2.0f * c) / (-b + sqrtDis);
                }
            } else if (dis == 0.0f) {
                zeroes[ret++] = -b / (2.0f * a);
            }
        } else if (b != 0.0f) {
            zeroes[ret++] = -c / b;
        }
        return ret - off;
    }

    // find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B)
    static int cubicRootsInAB(final float d0, float a0, float b0, float c0,
                              final float[] pts, final int off,
                              final float A, final float B)
    {
        if (d0 == 0.0f) {
            final int num = quadraticRoots(a0, b0, c0, pts, off);
            return filterOutNotInAB(pts, off, num, A, B) - off;
        }
        // From Graphics Gems:
        // https://github.com/erich666/GraphicsGems/blob/master/gems/Roots3And4.c
        // (also from awt.geom.CubicCurve2D. But here we don't need as
        // much accuracy and we don't want to create arrays so we use
        // our own customized version).

        // normal form: x^3 + ax^2 + bx + c = 0

        // 2018.1: Need double precision if d is very small (flat curve) !
        /*
         * TODO: cleanup all that code after reading Roots3And4.c
         */
        final double a = ((double)a0) / d0;
        final double b = ((double)b0) / d0;
        final double c = ((double)c0) / d0;

        //  substitute x = y - A/3 to eliminate quadratic term:
        //     x^3 +Px + Q = 0
        //
        // Since we actually need P/3 and Q/2 for all of the
        // calculations that follow, we will calculate
        // p = P/3
        // q = Q/2
        // instead and use those values for simplicity of the code.
        final double sub = (1.0d / 3.0d) * a;
        final double sq_A = a * a;
        final double p = (1.0d / 3.0d) * ((-1.0d / 3.0d) * sq_A + b);
        final double q = (1.0d / 2.0d) * ((2.0d / 27.0d) * a * sq_A - sub * b + c);

        // use Cardano's formula

        final double cb_p = p * p * p;
        final double D = q * q + cb_p;

        int num;
        if (D < 0.0d) {
            // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
            final double phi = (1.0d / 3.0d) * Math.acos(-q / Math.sqrt(-cb_p));
            final double t = 2.0d * Math.sqrt(-p);

            pts[off    ] = (float) ( t * Math.cos(phi) - sub);
            pts[off + 1] = (float) (-t * Math.cos(phi + (Math.PI / 3.0d)) - sub);
            pts[off + 2] = (float) (-t * Math.cos(phi - (Math.PI / 3.0d)) - sub);
            num = 3;
        } else {
            final double sqrt_D = Math.sqrt(D);
            final double u =   Math.cbrt(sqrt_D - q);
            final double v = - Math.cbrt(sqrt_D + q);

            pts[off    ] = (float) (u + v - sub);
            num = 1;

            if (within(D, 0.0d, 1e-8d)) {
                pts[off + 1] = (float)((-1.0d / 2.0d) * (u + v) - sub);
                num = 2;
            }
        }

        return filterOutNotInAB(pts, off, num, A, B) - off;
    }

    // returns the index 1 past the last valid element remaining after filtering
    static int filterOutNotInAB(final float[] nums, final int off, final int len,
                                final float a, final float b)
    {
        int ret = off;
        for (int i = off, end = off + len; i < end; i++) {
            if (nums[i] >= a && nums[i] < b) {
                nums[ret++] = nums[i];
            }
        }
        return ret;
    }

    static float fastLineLen(final float x0, final float y0,
                             final float x1, final float y1)
    {
        final float dx = x1 - x0;
        final float dy = y1 - y0;

        // use manhattan norm:
        return Math.abs(dx) + Math.abs(dy);
    }

    static float linelen(final float x0, final float y0,
                         final float x1, final float y1)
    {
        final float dx = x1 - x0;
        final float dy = y1 - y0;
        return (float) Math.sqrt(dx * dx + dy * dy);
    }

    static float fastQuadLen(final float x0, final float y0,
                             final float x1, final float y1,
                             final float x2, final float y2)
    {
        final float dx1 = x1 - x0;
        final float dx2 = x2 - x1;
        final float dy1 = y1 - y0;
        final float dy2 = y2 - y1;

        // use manhattan norm:
        return Math.abs(dx1) + Math.abs(dx2)
             + Math.abs(dy1) + Math.abs(dy2);
    }

    static float quadlen(final float x0, final float y0,
                         final float x1, final float y1,
                         final float x2, final float y2)
    {
        return (linelen(x0, y0, x1, y1)
                + linelen(x1, y1, x2, y2)
                + linelen(x0, y0, x2, y2)) / 2.0f;
    }


    static float fastCurvelen(final float x0, final float y0,
                              final float x1, final float y1,
                              final float x2, final float y2,
                              final float x3, final float y3)
    {
        final float dx1 = x1 - x0;
        final float dx2 = x2 - x1;
        final float dx3 = x3 - x2;
        final float dy1 = y1 - y0;
        final float dy2 = y2 - y1;
        final float dy3 = y3 - y2;

        // use manhattan norm:
        return Math.abs(dx1) + Math.abs(dx2) + Math.abs(dx3)
             + Math.abs(dy1) + Math.abs(dy2) + Math.abs(dy3);
    }

    static float curvelen(final float x0, final float y0,
                          final float x1, final float y1,
                          final float x2, final float y2,
                          final float x3, final float y3)
    {
        return (linelen(x0, y0, x1, y1)
              + linelen(x1, y1, x2, y2)
              + linelen(x2, y2, x3, y3)
              + linelen(x0, y0, x3, y3)) / 2.0f;
    }

    // finds values of t where the curve in pts should be subdivided in order
    // to get good offset curves a distance of w away from the middle curve.
    // Stores the points in ts, and returns how many of them there were.
    static int findSubdivPoints(final Curve c, final float[] pts,
                                final float[] ts, final int type,
                                final float w2)
    {
        final float x12 = pts[2] - pts[0];
        final float y12 = pts[3] - pts[1];
        // if the curve is already parallel to either axis we gain nothing
        // from rotating it.
        if ((y12 != 0.0f && x12 != 0.0f)) {
            // we rotate it so that the first vector in the control polygon is
            // parallel to the x-axis. This will ensure that rotated quarter
            // circles won't be subdivided.
            final float hypot = (float)Math.sqrt(x12 * x12 + y12 * y12);
            final float cos = x12 / hypot;
            final float sin = y12 / hypot;
            final float x1 = cos * pts[0] + sin * pts[1];
            final float y1 = cos * pts[1] - sin * pts[0];
            final float x2 = cos * pts[2] + sin * pts[3];
            final float y2 = cos * pts[3] - sin * pts[2];
            final float x3 = cos * pts[4] + sin * pts[5];
            final float y3 = cos * pts[5] - sin * pts[4];

            switch(type) {
            case 8:
                final float x4 = cos * pts[6] + sin * pts[7];
                final float y4 = cos * pts[7] - sin * pts[6];
                c.set(x1, y1, x2, y2, x3, y3, x4, y4);
                break;
            case 6:
                c.set(x1, y1, x2, y2, x3, y3);
                break;
            default:
            }
        } else {
            c.set(pts, type);
        }

        int ret = 0;
        // we subdivide at values of t such that the remaining rotated
        // curves are monotonic in x and y.
        ret += c.dxRoots(ts, ret);
        ret += c.dyRoots(ts, ret);

        // subdivide at inflection points.
        if (type == 8) {
            // quadratic curves can't have inflection points
            ret += c.infPoints(ts, ret);
        }

        // now we must subdivide at points where one of the offset curves will have
        // a cusp. This happens at ts where the radius of curvature is equal to w.
        ret += c.rootsOfROCMinusW(ts, ret, w2, 0.0001f);

        ret = filterOutNotInAB(ts, 0, ret, 0.0001f, 0.9999f);
        isort(ts, ret);
        return ret;
    }

    // finds values of t where the curve in pts should be subdivided in order
    // to get intersections with the given clip rectangle.
    // Stores the points in ts, and returns how many of them there were.
    static int findClipPoints(final Curve curve, final float[] pts,
                              final float[] ts, final int type,
                              final int outCodeOR,
                              final float[] clipRect)
    {
        curve.set(pts, type);

        // clip rectangle (ymin, ymax, xmin, xmax)
        int ret = 0;

        if ((outCodeOR & OUTCODE_LEFT) != 0) {
            ret += curve.xPoints(ts, ret, clipRect[2]);
        }
        if ((outCodeOR & OUTCODE_RIGHT) != 0) {
            ret += curve.xPoints(ts, ret, clipRect[3]);
        }
        if ((outCodeOR & OUTCODE_TOP) != 0) {
            ret += curve.yPoints(ts, ret, clipRect[0]);
        }
        if ((outCodeOR & OUTCODE_BOTTOM) != 0) {
            ret += curve.yPoints(ts, ret, clipRect[1]);
        }
        isort(ts, ret);
        return ret;
    }

    static void subdivide(final float[] src,
                          final float[] left, final float[] right,
                          final int type)
    {
        switch(type) {
        case 8:
            subdivideCubic(src, left, right);
            return;
        case 6:
            subdivideQuad(src, left, right);
            return;
        default:
            throw new InternalError("Unsupported curve type");
        }
    }

    static void isort(final float[] a, final int len) {
        for (int i = 1, j; i < len; i++) {
            final float ai = a[i];
            j = i - 1;
            for (; j >= 0 && a[j] > ai; j--) {
                a[j + 1] = a[j];
            }
            a[j + 1] = ai;
        }
    }

    // Most of these are copied from classes in java.awt.geom because we need
    // both single and double precision variants of these functions, and Line2D,
    // CubicCurve2D, QuadCurve2D don't provide them.
    
Subdivides the cubic curve specified by the coordinates stored in the src array at indices srcoff through (srcoff + 7) and stores the resulting two subdivided curves into the two result arrays at the corresponding indices. Either or both of the left and right arrays may be null or a reference to the same array as the src array. Note that the last point in the first subdivided curve is the same as the first point in the second subdivided curve. Thus, it is possible to pass the same array for left and right and to use offsets, such as rightoff equals (leftoff + 6), in order to avoid allocating extra storage for this common point.
Params:
  • src – the array holding the coordinates for the source curve
  • left – the array for storing the coordinates for the first half of the subdivided curve
  • right – the array for storing the coordinates for the second half of the subdivided curve
Since:1.7
/** * Subdivides the cubic curve specified by the coordinates * stored in the <code>src</code> array at indices <code>srcoff</code> * through (<code>srcoff</code>&nbsp;+&nbsp;7) and stores the * resulting two subdivided curves into the two result arrays at the * corresponding indices. * Either or both of the <code>left</code> and <code>right</code> * arrays may be <code>null</code> or a reference to the same array * as the <code>src</code> array. * Note that the last point in the first subdivided curve is the * same as the first point in the second subdivided curve. Thus, * it is possible to pass the same array for <code>left</code> * and <code>right</code> and to use offsets, such as <code>rightoff</code> * equals (<code>leftoff</code> + 6), in order * to avoid allocating extra storage for this common point. * @param src the array holding the coordinates for the source curve * @param left the array for storing the coordinates for the first * half of the subdivided curve * @param right the array for storing the coordinates for the second * half of the subdivided curve * @since 1.7 */
static void subdivideCubic(final float[] src, final float[] left, final float[] right) { float x1 = src[0]; float y1 = src[1]; float cx1 = src[2]; float cy1 = src[3]; float cx2 = src[4]; float cy2 = src[5]; float x2 = src[6]; float y2 = src[7]; left[0] = x1; left[1] = y1; right[6] = x2; right[7] = y2; x1 = (x1 + cx1) / 2.0f; y1 = (y1 + cy1) / 2.0f; x2 = (x2 + cx2) / 2.0f; y2 = (y2 + cy2) / 2.0f; float cx = (cx1 + cx2) / 2.0f; float cy = (cy1 + cy2) / 2.0f; cx1 = (x1 + cx) / 2.0f; cy1 = (y1 + cy) / 2.0f; cx2 = (x2 + cx) / 2.0f; cy2 = (y2 + cy) / 2.0f; cx = (cx1 + cx2) / 2.0f; cy = (cy1 + cy2) / 2.0f; left[2] = x1; left[3] = y1; left[4] = cx1; left[5] = cy1; left[6] = cx; left[7] = cy; right[0] = cx; right[1] = cy; right[2] = cx2; right[3] = cy2; right[4] = x2; right[5] = y2; } static void subdivideCubicAt(final float t, final float[] src, final int offS, final float[] pts, final int offL, final int offR) { float x1 = src[offS ]; float y1 = src[offS + 1]; float cx1 = src[offS + 2]; float cy1 = src[offS + 3]; float cx2 = src[offS + 4]; float cy2 = src[offS + 5]; float x2 = src[offS + 6]; float y2 = src[offS + 7]; pts[offL ] = x1; pts[offL + 1] = y1; pts[offR + 6] = x2; pts[offR + 7] = y2; x1 = x1 + t * (cx1 - x1); y1 = y1 + t * (cy1 - y1); x2 = cx2 + t * (x2 - cx2); y2 = cy2 + t * (y2 - cy2); float cx = cx1 + t * (cx2 - cx1); float cy = cy1 + t * (cy2 - cy1); cx1 = x1 + t * (cx - x1); cy1 = y1 + t * (cy - y1); cx2 = cx + t * (x2 - cx); cy2 = cy + t * (y2 - cy); cx = cx1 + t * (cx2 - cx1); cy = cy1 + t * (cy2 - cy1); pts[offL + 2] = x1; pts[offL + 3] = y1; pts[offL + 4] = cx1; pts[offL + 5] = cy1; pts[offL + 6] = cx; pts[offL + 7] = cy; pts[offR ] = cx; pts[offR + 1] = cy; pts[offR + 2] = cx2; pts[offR + 3] = cy2; pts[offR + 4] = x2; pts[offR + 5] = y2; } static void subdivideQuad(final float[] src, final float[] left, final float[] right) { float x1 = src[0]; float y1 = src[1]; float cx = src[2]; float cy = src[3]; float x2 = src[4]; float y2 = src[5]; left[0] = x1; left[1] = y1; right[4] = x2; right[5] = y2; x1 = (x1 + cx) / 2.0f; y1 = (y1 + cy) / 2.0f; x2 = (x2 + cx) / 2.0f; y2 = (y2 + cy) / 2.0f; cx = (x1 + x2) / 2.0f; cy = (y1 + y2) / 2.0f; left[2] = x1; left[3] = y1; left[4] = cx; left[5] = cy; right[0] = cx; right[1] = cy; right[2] = x2; right[3] = y2; } static void subdivideQuadAt(final float t, final float[] src, final int offS, final float[] pts, final int offL, final int offR) { float x1 = src[offS ]; float y1 = src[offS + 1]; float cx = src[offS + 2]; float cy = src[offS + 3]; float x2 = src[offS + 4]; float y2 = src[offS + 5]; pts[offL ] = x1; pts[offL + 1] = y1; pts[offR + 4] = x2; pts[offR + 5] = y2; x1 = x1 + t * (cx - x1); y1 = y1 + t * (cy - y1); x2 = cx + t * (x2 - cx); y2 = cy + t * (y2 - cy); cx = x1 + t * (x2 - x1); cy = y1 + t * (y2 - y1); pts[offL + 2] = x1; pts[offL + 3] = y1; pts[offL + 4] = cx; pts[offL + 5] = cy; pts[offR ] = cx; pts[offR + 1] = cy; pts[offR + 2] = x2; pts[offR + 3] = y2; } static void subdivideLineAt(final float t, final float[] src, final int offS, final float[] pts, final int offL, final int offR) { float x1 = src[offS ]; float y1 = src[offS + 1]; float x2 = src[offS + 2]; float y2 = src[offS + 3]; pts[offL ] = x1; pts[offL + 1] = y1; pts[offR + 2] = x2; pts[offR + 3] = y2; x1 = x1 + t * (x2 - x1); y1 = y1 + t * (y2 - y1); pts[offL + 2] = x1; pts[offL + 3] = y1; pts[offR ] = x1; pts[offR + 1] = y1; } static void subdivideAt(final float t, final float[] src, final int offS, final float[] pts, final int offL, final int type) { // if instead of switch (perf + most probable cases first) if (type == 8) { subdivideCubicAt(t, src, offS, pts, offL, offL + type); } else if (type == 4) { subdivideLineAt(t, src, offS, pts, offL, offL + type); } else { subdivideQuadAt(t, src, offS, pts, offL, offL + type); } } // From sun.java2d.loops.GeneralRenderer: static int outcode(final float x, final float y, final float[] clipRect) { int code; if (y < clipRect[0]) { code = OUTCODE_TOP; } else if (y >= clipRect[1]) { code = OUTCODE_BOTTOM; } else { code = 0; } if (x < clipRect[2]) { code |= OUTCODE_LEFT; } else if (x >= clipRect[3]) { code |= OUTCODE_RIGHT; } return code; } // a stack of polynomial curves where each curve shares endpoints with // adjacent ones. static final class PolyStack { private static final byte TYPE_LINETO = (byte) 0; private static final byte TYPE_QUADTO = (byte) 1; private static final byte TYPE_CUBICTO = (byte) 2; // curves capacity = edges count (8192) = edges x 2 (coords) private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT << 1; // types capacity = edges count (4096) private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT; float[] curves; int end; byte[] curveTypes; int numCurves; // curves ref (dirty) final FloatArrayCache.Reference curves_ref; // curveTypes ref (dirty) final ByteArrayCache.Reference curveTypes_ref; // used marks (stats only) int curveTypesUseMark; int curvesUseMark; private final StatLong stat_polystack_types; private final StatLong stat_polystack_curves; private final Histogram hist_polystack_curves; private final StatLong stat_array_polystack_curves; private final StatLong stat_array_polystack_curveTypes; PolyStack(final RendererContext rdrCtx) { this(rdrCtx, null, null, null, null, null); } PolyStack(final RendererContext rdrCtx, final StatLong stat_polystack_types, final StatLong stat_polystack_curves, final Histogram hist_polystack_curves, final StatLong stat_array_polystack_curves, final StatLong stat_array_polystack_curveTypes) { curves_ref = rdrCtx.newDirtyFloatArrayRef(INITIAL_CURVES_COUNT); // 32K curves = curves_ref.initial; curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 4K curveTypes = curveTypes_ref.initial; numCurves = 0; end = 0; if (DO_STATS) { curveTypesUseMark = 0; curvesUseMark = 0; } this.stat_polystack_types = stat_polystack_types; this.stat_polystack_curves = stat_polystack_curves; this.hist_polystack_curves = hist_polystack_curves; this.stat_array_polystack_curves = stat_array_polystack_curves; this.stat_array_polystack_curveTypes = stat_array_polystack_curveTypes; }
Disposes this PolyStack: clean up before reusing this instance
/** * Disposes this PolyStack: * clean up before reusing this instance */
void dispose() { end = 0; numCurves = 0; if (DO_STATS) { stat_polystack_types.add(curveTypesUseMark); stat_polystack_curves.add(curvesUseMark); hist_polystack_curves.add(curvesUseMark); // reset marks curveTypesUseMark = 0; curvesUseMark = 0; } // Return arrays: // curves and curveTypes are kept dirty curves = curves_ref.putArray(curves); curveTypes = curveTypes_ref.putArray(curveTypes); } private void ensureSpace(final int n) { // use substraction to avoid integer overflow: if (curves.length - end < n) { if (DO_STATS) { stat_array_polystack_curves.add(end + n); } curves = curves_ref.widenArray(curves, end, end + n); } if (curveTypes.length <= numCurves) { if (DO_STATS) { stat_array_polystack_curveTypes.add(numCurves + 1); } curveTypes = curveTypes_ref.widenArray(curveTypes, numCurves, numCurves + 1); } } void pushCubic(float x0, float y0, float x1, float y1, float x2, float y2) { ensureSpace(6); curveTypes[numCurves++] = TYPE_CUBICTO; // we reverse the coordinate order to make popping easier final float[] _curves = curves; int e = end; _curves[e++] = x2; _curves[e++] = y2; _curves[e++] = x1; _curves[e++] = y1; _curves[e++] = x0; _curves[e++] = y0; end = e; } void pushQuad(float x0, float y0, float x1, float y1) { ensureSpace(4); curveTypes[numCurves++] = TYPE_QUADTO; final float[] _curves = curves; int e = end; _curves[e++] = x1; _curves[e++] = y1; _curves[e++] = x0; _curves[e++] = y0; end = e; } void pushLine(float x, float y) { ensureSpace(2); curveTypes[numCurves++] = TYPE_LINETO; curves[end++] = x; curves[end++] = y; } void pullAll(final PathConsumer2D io) { final int nc = numCurves; if (nc == 0) { return; } if (DO_STATS) { // update used marks: if (numCurves > curveTypesUseMark) { curveTypesUseMark = numCurves; } if (end > curvesUseMark) { curvesUseMark = end; } } final byte[] _curveTypes = curveTypes; final float[] _curves = curves; int e = 0; for (int i = 0; i < nc; i++) { switch(_curveTypes[i]) { case TYPE_LINETO: io.lineTo(_curves[e], _curves[e+1]); e += 2; continue; case TYPE_CUBICTO: io.curveTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3], _curves[e+4], _curves[e+5]); e += 6; continue; case TYPE_QUADTO: io.quadTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3]); e += 4; continue; default: } } numCurves = 0; end = 0; } void popAll(final PathConsumer2D io) { int nc = numCurves; if (nc == 0) { return; } if (DO_STATS) { // update used marks: if (numCurves > curveTypesUseMark) { curveTypesUseMark = numCurves; } if (end > curvesUseMark) { curvesUseMark = end; } } final byte[] _curveTypes = curveTypes; final float[] _curves = curves; int e = end; while (nc != 0) { switch(_curveTypes[--nc]) { case TYPE_LINETO: e -= 2; io.lineTo(_curves[e], _curves[e+1]); continue; case TYPE_CUBICTO: e -= 6; io.curveTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3], _curves[e+4], _curves[e+5]); continue; case TYPE_QUADTO: e -= 4; io.quadTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3]); continue; default: } } numCurves = 0; end = 0; } @Override public String toString() { String ret = ""; int nc = numCurves; int last = end; int len; while (nc != 0) { switch(curveTypes[--nc]) { case TYPE_LINETO: len = 2; ret += "line: "; break; case TYPE_QUADTO: len = 4; ret += "quad: "; break; case TYPE_CUBICTO: len = 6; ret += "cubic: "; break; default: len = 0; } last -= len; ret += Arrays.toString(Arrays.copyOfRange(curves, last, last+len)) + "\n"; } return ret; } } // a stack of integer indices static final class IndexStack { // integer capacity = edges count / 4 ~ 1024 private static final int INITIAL_COUNT = INITIAL_EDGES_COUNT >> 2; private int end; private int[] indices; // indices ref (dirty) private final IntArrayCache.Reference indices_ref; // used marks (stats only) private int indicesUseMark; private final StatLong stat_idxstack_indices; private final Histogram hist_idxstack_indices; private final StatLong stat_array_idxstack_indices; IndexStack(final RendererContext rdrCtx) { this(rdrCtx, null, null, null); } IndexStack(final RendererContext rdrCtx, final StatLong stat_idxstack_indices, final Histogram hist_idxstack_indices, final StatLong stat_array_idxstack_indices) { indices_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_COUNT); // 4K indices = indices_ref.initial; end = 0; if (DO_STATS) { indicesUseMark = 0; } this.stat_idxstack_indices = stat_idxstack_indices; this.hist_idxstack_indices = hist_idxstack_indices; this.stat_array_idxstack_indices = stat_array_idxstack_indices; }
Disposes this PolyStack: clean up before reusing this instance
/** * Disposes this PolyStack: * clean up before reusing this instance */
void dispose() { end = 0; if (DO_STATS) { stat_idxstack_indices.add(indicesUseMark); hist_idxstack_indices.add(indicesUseMark); // reset marks indicesUseMark = 0; } // Return arrays: // values is kept dirty indices = indices_ref.putArray(indices); } boolean isEmpty() { return (end == 0); } void reset() { end = 0; } void push(final int v) { // remove redundant values (reverse order): int[] _values = indices; final int nc = end; if (nc != 0) { if (_values[nc - 1] == v) { // remove both duplicated values: end--; return; } } if (_values.length <= nc) { if (DO_STATS) { stat_array_idxstack_indices.add(nc + 1); } indices = _values = indices_ref.widenArray(_values, nc, nc + 1); } _values[end++] = v; if (DO_STATS) { // update used marks: if (end > indicesUseMark) { indicesUseMark = end; } } } void pullAll(final float[] points, final PathConsumer2D io) { final int nc = end; if (nc == 0) { return; } final int[] _values = indices; for (int i = 0, j; i < nc; i++) { j = _values[i] << 1; io.lineTo(points[j], points[j + 1]); } end = 0; } } }