/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.javafx.geom;

import com.sun.javafx.geom.transform.BaseTransform;

Version:10 Feb 1997
/** * <a name="inscribes"> * The arc is a partial section of a full ellipse which * inscribes the framing rectangle of its parent {@link RectangularShape}. * </a> * <a name="angles"> * The angles are specified relative to the non-square * framing rectangle such that 45 degrees always falls on the line from * the center of the ellipse to the upper right corner of the framing * rectangle. * As a result, if the framing rectangle is noticeably longer along one * axis than the other, the angles to the start and end of the arc segment * will be skewed farther along the longer axis of the frame. * </a> * * @version 10 Feb 1997 */
public class Arc2D extends RectangularShape {
The closure type for an open arc with no path segments connecting the two ends of the arc segment.
/** * The closure type for an open arc with no path segments * connecting the two ends of the arc segment. */
public final static int OPEN = 0;
The closure type for an arc closed by drawing a straight line segment from the start of the arc segment to the end of the arc segment.
/** * The closure type for an arc closed by drawing a straight * line segment from the start of the arc segment to the end of the * arc segment. */
public final static int CHORD = 1;
The closure type for an arc closed by drawing straight line segments from the start of the arc segment to the center of the full ellipse and from that point to the end of the arc segment.
/** * The closure type for an arc closed by drawing straight line * segments from the start of the arc segment to the center * of the full ellipse and from that point to the end of the arc segment. */
public final static int PIE = 2; private int type;
The X coordinate of the upper-left corner of the framing rectangle of the arc.
@serial
/** * The X coordinate of the upper-left corner of the framing * rectangle of the arc. * @serial */
public float x;
The Y coordinate of the upper-left corner of the framing rectangle of the arc.
@serial
/** * The Y coordinate of the upper-left corner of the framing * rectangle of the arc. * @serial */
public float y;
The overall width of the full ellipse of which this arc is a partial section (not considering the angular extents).
@serial
/** * The overall width of the full ellipse of which this arc is * a partial section (not considering the * angular extents). * @serial */
public float width;
The overall height of the full ellipse of which this arc is a partial section (not considering the angular extents).
@serial
/** * The overall height of the full ellipse of which this arc is * a partial section (not considering the * angular extents). * @serial */
public float height;
The starting angle of the arc in degrees.
@serial
/** * The starting angle of the arc in degrees. * @serial */
public float start;
The angular extent of the arc in degrees.
@serial
/** * The angular extent of the arc in degrees. * @serial */
public float extent;
Constructs a new OPEN arc, initialized to location (0, 0), size (0, 0), angular extents (start = 0, extent = 0).
/** * Constructs a new OPEN arc, initialized to location (0, 0), * size (0, 0), angular extents (start = 0, extent = 0). */
public Arc2D() { this(OPEN); }
Constructs a new arc, initialized to location (0, 0), size (0, 0), angular extents (start = 0, extent = 0), and the specified closure type.
Params:
/** * Constructs a new arc, initialized to location (0, 0), * size (0, 0), angular extents (start = 0, extent = 0), and * the specified closure type. * * @param type The closure type for the arc: * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. */
public Arc2D(int type) { setArcType(type); }
Constructs a new arc, initialized to the specified location, size, angular extents, and closure type.
Params:
  • x – The X coordinate of the upper-left corner of the arc's framing rectangle.
  • y – The Y coordinate of the upper-left corner of the arc's framing rectangle.
  • w – The overall width of the full ellipse of which this arc is a partial section.
  • h – The overall height of the full ellipse of which this arc is a partial section.
  • start – The starting angle of the arc in degrees.
  • extent – The angular extent of the arc in degrees.
  • type – The closure type for the arc: OPEN, CHORD, or PIE.
/** * Constructs a new arc, initialized to the specified location, * size, angular extents, and closure type. * * @param x The X coordinate of the upper-left corner of * the arc's framing rectangle. * @param y The Y coordinate of the upper-left corner of * the arc's framing rectangle. * @param w The overall width of the full ellipse of which * this arc is a partial section. * @param h The overall height of the full ellipse of which this * arc is a partial section. * @param start The starting angle of the arc in degrees. * @param extent The angular extent of the arc in degrees. * @param type The closure type for the arc: * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. */
public Arc2D(float x, float y, float w, float h, float start, float extent, int type) { this(type); this.x = x; this.y = y; this.width = w; this.height = h; this.start = start; this.extent = extent; }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public float getX() { return x; }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public float getY() { return y; }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public float getWidth() { return width; }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public float getHeight() { return height; }
{@inheritDoc}
/** * {@inheritDoc} */
public boolean isEmpty() { return (width <= 0f || height <= 0f); }
{@inheritDoc}
/** * {@inheritDoc} */
public void setArc(float x, float y, float w, float h, float angSt, float angExt, int closure) { this.setArcType(closure); this.x = x; this.y = y; this.width = w; this.height = h; this.start = angSt; this.extent = angExt; }
Returns the arc closure type of the arc: OPEN, CHORD, or PIE.
See Also:
Returns:One of the integer constant closure types defined in this class.
/** * Returns the arc closure type of the arc: {@link #OPEN}, * {@link #CHORD}, or {@link #PIE}. * @return One of the integer constant closure types defined * in this class. * @see #setArcType */
public int getArcType() { return type; }
Returns the starting point of the arc. This point is the intersection of the ray from the center defined by the starting angle and the elliptical boundary of the arc.
Returns:A Point2D object representing the x,y coordinates of the starting point of the arc.
/** * Returns the starting point of the arc. This point is the * intersection of the ray from the center defined by the * starting angle and the elliptical boundary of the arc. * * @return A <CODE>Point2D</CODE> object representing the * x,y coordinates of the starting point of the arc. */
public Point2D getStartPoint() { double angle = Math.toRadians(-start); double x = this.x + (Math.cos(angle) * 0.5 + 0.5) * width; double y = this.y + (Math.sin(angle) * 0.5 + 0.5) * height; return new Point2D((float)x, (float)y); }
Returns the ending point of the arc. This point is the intersection of the ray from the center defined by the starting angle plus the angular extent of the arc and the elliptical boundary of the arc.
Returns:A Point2D object representing the x,y coordinates of the ending point of the arc.
/** * Returns the ending point of the arc. This point is the * intersection of the ray from the center defined by the * starting angle plus the angular extent of the arc and the * elliptical boundary of the arc. * * @return A <CODE>Point2D</CODE> object representing the * x,y coordinates of the ending point of the arc. */
public Point2D getEndPoint() { double angle = Math.toRadians(-start - extent); double x = this.x + (Math.cos(angle) * 0.5 + 0.5) * width; double y = this.y + (Math.sin(angle) * 0.5 + 0.5) * height; return new Point2D((float)x, (float)y); }
Sets the location, size, angular extents, and closure type of this arc to the specified values.
Params:
  • loc – The Point2D representing the coordinates of the upper-left corner of the arc.
  • size – The Dimension2D representing the width and height of the full ellipse of which this arc is a partial section.
  • angSt – The starting angle of the arc in degrees.
  • angExt – The angular extent of the arc in degrees.
  • closure – The closure type for the arc: OPEN, CHORD, or PIE.
/** * Sets the location, size, angular extents, and closure type of * this arc to the specified values. * * @param loc The <CODE>Point2D</CODE> representing the coordinates of * the upper-left corner of the arc. * @param size The <CODE>Dimension2D</CODE> representing the width * and height of the full ellipse of which this arc is * a partial section. * @param angSt The starting angle of the arc in degrees. * @param angExt The angular extent of the arc in degrees. * @param closure The closure type for the arc: * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. */
public void setArc(Point2D loc, Dimension2D size, float angSt, float angExt, int closure) { setArc(loc.x, loc.y, size.width, size.height, angSt, angExt, closure); }
Sets this arc to be the same as the specified arc.
Params:
  • a – The Arc2D to use to set the arc's values.
/** * Sets this arc to be the same as the specified arc. * * @param a The <CODE>Arc2D</CODE> to use to set the arc's values. */
public void setArc(Arc2D a) { setArc(a.x, a.y, a.width, a.height, a.start, a.extent, a.type); }
Sets the position, bounds, angular extents, and closure type of this arc to the specified values. The arc is defined by a center point and a radius rather than a framing rectangle for the full ellipse.
Params:
  • x – The X coordinate of the center of the arc.
  • y – The Y coordinate of the center of the arc.
  • radius – The radius of the arc.
  • angSt – The starting angle of the arc in degrees.
  • angExt – The angular extent of the arc in degrees.
  • closure – The closure type for the arc: OPEN, CHORD, or PIE.
/** * Sets the position, bounds, angular extents, and closure type of * this arc to the specified values. The arc is defined by a center * point and a radius rather than a framing rectangle for the full ellipse. * * @param x The X coordinate of the center of the arc. * @param y The Y coordinate of the center of the arc. * @param radius The radius of the arc. * @param angSt The starting angle of the arc in degrees. * @param angExt The angular extent of the arc in degrees. * @param closure The closure type for the arc: * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. */
public void setArcByCenter(float x, float y, float radius, float angSt, float angExt, int closure) { setArc(x - radius, y - radius, radius * 2f, radius * 2f, angSt, angExt, closure); }
Sets the position, bounds, and angular extents of this arc to the specified value. The starting angle of the arc is tangent to the line specified by points (p1, p2), the ending angle is tangent to the line specified by points (p2, p3), and the arc has the specified radius.
Params:
  • p1 – The first point that defines the arc. The starting angle of the arc is tangent to the line specified by points (p1, p2).
  • p2 – The second point that defines the arc. The starting angle of the arc is tangent to the line specified by points (p1, p2). The ending angle of the arc is tangent to the line specified by points (p2, p3).
  • p3 – The third point that defines the arc. The ending angle of the arc is tangent to the line specified by points (p2, p3).
  • radius – The radius of the arc.
/** * Sets the position, bounds, and angular extents of this arc to the * specified value. The starting angle of the arc is tangent to the * line specified by points (p1, p2), the ending angle is tangent to * the line specified by points (p2, p3), and the arc has the * specified radius. * * @param p1 The first point that defines the arc. The starting * angle of the arc is tangent to the line specified by points (p1, p2). * @param p2 The second point that defines the arc. The starting * angle of the arc is tangent to the line specified by points (p1, p2). * The ending angle of the arc is tangent to the line specified by * points (p2, p3). * @param p3 The third point that defines the arc. The ending angle * of the arc is tangent to the line specified by points (p2, p3). * @param radius The radius of the arc. */
public void setArcByTangent(Point2D p1, Point2D p2, Point2D p3, float radius) { double ang1 = Math.atan2(p1.y - p2.y, p1.x - p2.x); double ang2 = Math.atan2(p3.y - p2.y, p3.x - p2.x); double diff = ang2 - ang1; if (diff > Math.PI) { ang2 -= Math.PI * 2.0; } else if (diff < -Math.PI) { ang2 += Math.PI * 2.0; } double bisect = (ang1 + ang2) / 2.0; double theta = Math.abs(ang2 - bisect); double dist = radius / Math.sin(theta); double x = p2.x + dist * Math.cos(bisect); double y = p2.y + dist * Math.sin(bisect); // REMIND: This needs some work... if (ang1 < ang2) { ang1 -= Math.PI / 2.0; ang2 += Math.PI / 2.0; } else { ang1 += Math.PI / 2.0; ang2 -= Math.PI / 2.0; } ang1 = Math.toDegrees(-ang1); ang2 = Math.toDegrees(-ang2); diff = ang2 - ang1; if (diff < 0) { diff += 360; } else { diff -= 360; } setArcByCenter((float)x, (float)y, (float)radius, (float)ang1, (float)diff, type); }
Sets the starting angle of this arc to the angle that the specified point defines relative to the center of this arc. The angular extent of the arc will remain the same.
Params:
  • p – The Point2D that defines the starting angle.
See Also:
/** * Sets the starting angle of this arc to the angle that the * specified point defines relative to the center of this arc. * The angular extent of the arc will remain the same. * * @param p The <CODE>Point2D</CODE> that defines the starting angle. * @see #start */
public void setAngleStart(Point2D p) { // Bias the dx and dy by the height and width of the oval. double dx = this.height * (p.x - getCenterX()); double dy = this.width * (p.y - getCenterY()); start = (float)-Math.toDegrees(Math.atan2(dy, dx)); }
Sets the starting angle and angular extent of this arc using two sets of coordinates. The first set of coordinates is used to determine the angle of the starting point relative to the arc's center. The second set of coordinates is used to determine the angle of the end point relative to the arc's center. The arc will always be non-empty and extend counterclockwise from the first point around to the second point.
Params:
  • x1 – The X coordinate of the arc's starting point.
  • y1 – The Y coordinate of the arc's starting point.
  • x2 – The X coordinate of the arc's ending point.
  • y2 – The Y coordinate of the arc's ending point.
/** * Sets the starting angle and angular extent of this arc using two * sets of coordinates. The first set of coordinates is used to * determine the angle of the starting point relative to the arc's * center. The second set of coordinates is used to determine the * angle of the end point relative to the arc's center. * The arc will always be non-empty and extend counterclockwise * from the first point around to the second point. * * @param x1 The X coordinate of the arc's starting point. * @param y1 The Y coordinate of the arc's starting point. * @param x2 The X coordinate of the arc's ending point. * @param y2 The Y coordinate of the arc's ending point. */
public void setAngles(float x1, float y1, float x2, float y2) { double x = getCenterX(); double y = getCenterY(); double w = this.width; double h = this.height;; // Note: reversing the Y equations negates the angle to adjust // for the upside down coordinate system. // Also we should bias atans by the height and width of the oval. double ang1 = Math.atan2(w * (y - y1), h * (x1 - x)); double ang2 = Math.atan2(w * (y - y2), h * (x2 - x)); ang2 -= ang1; if (ang2 <= 0.0) { ang2 += Math.PI * 2.0; } start = (float)Math.toDegrees(ang1); extent = (float)Math.toDegrees(ang2); }
Sets the starting angle and angular extent of this arc using two points. The first point is used to determine the angle of the starting point relative to the arc's center. The second point is used to determine the angle of the end point relative to the arc's center. The arc will always be non-empty and extend counterclockwise from the first point around to the second point.
Params:
  • p1 – The Point2D that defines the arc's starting point.
  • p2 – The Point2D that defines the arc's ending point.
/** * Sets the starting angle and angular extent of this arc using * two points. The first point is used to determine the angle of * the starting point relative to the arc's center. * The second point is used to determine the angle of the end point * relative to the arc's center. * The arc will always be non-empty and extend counterclockwise * from the first point around to the second point. * * @param p1 The <CODE>Point2D</CODE> that defines the arc's * starting point. * @param p2 The <CODE>Point2D</CODE> that defines the arc's * ending point. */
public void setAngles(Point2D p1, Point2D p2) { setAngles(p1.x, p1.y, p2.x, p2.y); }
Sets the closure type of this arc to the specified value: OPEN, CHORD, or PIE.
Params:
  • type – The integer constant that represents the closure type of this arc: OPEN, CHORD, or PIE.
Throws:
See Also:
/** * Sets the closure type of this arc to the specified value: * <CODE>OPEN</CODE>, <CODE>CHORD</CODE>, or <CODE>PIE</CODE>. * * @param type The integer constant that represents the closure * type of this arc: {@link #OPEN}, {@link #CHORD}, or * {@link #PIE}. * * @throws IllegalArgumentException if <code>type</code> is not * 0, 1, or 2.+ * @see #getArcType */
public void setArcType(int type) { if (type < OPEN || type > PIE) { throw new IllegalArgumentException("invalid type for Arc: "+type); } this.type = type; }
{@inheritDoc} Note that the arc partially inscribes the framing rectangle of this RectangularShape.
/** * {@inheritDoc} * Note that the arc * <a href="Arc2D.html#inscribes">partially inscribes</a> * the framing rectangle of this {@code RectangularShape}. */
public void setFrame(float x, float y, float w, float h) { setArc(x, y, w, h, start, extent, type); }
Returns the high-precision framing rectangle of the arc. The framing rectangle contains only the part of this Arc2D that is in between the starting and ending angles and contains the pie wedge, if this Arc2D has a PIE closure type.

This method differs from the getBounds in that the getBounds method only returns the bounds of the enclosing ellipse of this Arc2D without considering the starting and ending angles of this Arc2D.

Returns:the RectBounds that represents the arc's framing rectangle.
/** * Returns the high-precision framing rectangle of the arc. The framing * rectangle contains only the part of this <code>Arc2D</code> that is * in between the starting and ending angles and contains the pie * wedge, if this <code>Arc2D</code> has a <code>PIE</code> closure type. * <p> * This method differs from the * {@link RectangularShape#getBounds() getBounds} in that the * <code>getBounds</code> method only returns the bounds of the * enclosing ellipse of this <code>Arc2D</code> without considering * the starting and ending angles of this <code>Arc2D</code>. * * @return the <CODE>RectBounds</CODE> that represents the arc's * framing rectangle. */
public RectBounds getBounds() { if (isEmpty()) { return new RectBounds(x, y, x + width, y + height); } double x1, y1, x2, y2; if (getArcType() == PIE) { x1 = y1 = x2 = y2 = 0.0; } else { x1 = y1 = 1.0; x2 = y2 = -1.0; } double angle = 0.0; for (int i = 0; i < 6; i++) { if (i < 4) { // 0-3 are the four quadrants angle += 90.0; if (!containsAngle((float)angle)) { continue; } } else if (i == 4) { // 4 is start angle angle = start; } else { // 5 is end angle angle += extent; } double rads = Math.toRadians(-angle); double xe = Math.cos(rads); double ye = Math.sin(rads); x1 = Math.min(x1, xe); y1 = Math.min(y1, ye); x2 = Math.max(x2, xe); y2 = Math.max(y2, ye); } double w = this.width; double h = this.height; x2 = this.x + (x2 * 0.5 + 0.5) * w; y2 = this.y + (y2 * 0.5 + 0.5) * h; x1 = this.x + (x1 * 0.5 + 0.5) * w; y1 = this.y + (y1 * 0.5 + 0.5) * h; return new RectBounds((float)x1, (float)y1, (float)x2, (float)y2); } /* * Normalizes the specified angle into the range -180 to 180. */ static float normalizeDegrees(double angle) { if (angle > 180.0) { if (angle <= (180.0 + 360.0)) { angle = angle - 360.0; } else { angle = Math.IEEEremainder(angle, 360.0); // IEEEremainder can return -180 here for some input values... if (angle == -180.0) { angle = 180.0; } } } else if (angle <= -180.0) { if (angle > (-180.0 - 360.0)) { angle = angle + 360.0; } else { angle = Math.IEEEremainder(angle, 360.0); // IEEEremainder can return -180 here for some input values... if (angle == -180.0) { angle = 180.0; } } } return (float)angle; }
Determines whether or not the specified angle is within the angular extents of the arc.
Params:
  • angle – The angle to test.
Returns:true if the arc contains the angle, false if the arc doesn't contain the angle.
/** * Determines whether or not the specified angle is within the * angular extents of the arc. * * @param angle The angle to test. * * @return <CODE>true</CODE> if the arc contains the angle, * <CODE>false</CODE> if the arc doesn't contain the angle. */
public boolean containsAngle(float angle) { double angExt = extent; boolean backwards = (angExt < 0.0); if (backwards) { angExt = -angExt; } if (angExt >= 360.0) { return true; } angle = normalizeDegrees(angle) - normalizeDegrees(start); if (backwards) { angle = -angle; } if (angle < 0.0) { angle += 360.0; } return (angle >= 0.0) && (angle < angExt); }
Determines whether or not the specified point is inside the boundary of the arc.
Params:
  • x – The X coordinate of the point to test.
  • y – The Y coordinate of the point to test.
Returns:true if the point lies within the bound of the arc, false if the point lies outside of the arc's bounds.
/** * Determines whether or not the specified point is inside the boundary * of the arc. * * @param x The X coordinate of the point to test. * @param y The Y coordinate of the point to test. * * @return <CODE>true</CODE> if the point lies within the bound of * the arc, <CODE>false</CODE> if the point lies outside of the * arc's bounds. */
public boolean contains(float x, float y) { // Normalize the coordinates compared to the ellipse // having a center at 0,0 and a radius of 0.5. double ellw = this.width; if (ellw <= 0.0) { return false; } double normx = (x - this.x) / ellw - 0.5; double ellh = this.height; if (ellh <= 0.0) { return false; } double normy = (y - this.y) / ellh - 0.5; double distSq = (normx * normx + normy * normy); if (distSq >= 0.25) { return false; } double angExt = Math.abs(extent); if (angExt >= 360.0) { return true; } boolean inarc = containsAngle((float)-Math.toDegrees(Math.atan2(normy, normx))); if (type == PIE) { return inarc; } // CHORD and OPEN behave the same way if (inarc) { if (angExt >= 180.0) { return true; } // point must be outside the "pie triangle" } else { if (angExt <= 180.0) { return false; } // point must be inside the "pie triangle" } // The point is inside the pie triangle iff it is on the same // side of the line connecting the ends of the arc as the center. double angle = Math.toRadians(-start); double x1 = Math.cos(angle); double y1 = Math.sin(angle); angle += Math.toRadians(-extent); double x2 = Math.cos(angle); double y2 = Math.sin(angle); boolean inside = (Line2D.relativeCCW((float)x1, (float)y1, (float)x2, (float)y2, (float)(2*normx), (float)(2*normy)) * Line2D.relativeCCW((float)x1, (float)y1, (float)x2, (float)y2, 0, 0) >= 0); return inarc ? !inside : inside; }
Determines whether or not the interior of the arc intersects the interior of the specified rectangle.
Params:
  • x – The X coordinate of the rectangle's upper-left corner.
  • y – The Y coordinate of the rectangle's upper-left corner.
  • w – The width of the rectangle.
  • h – The height of the rectangle.
Returns:true if the arc intersects the rectangle, false if the arc doesn't intersect the rectangle.
/** * Determines whether or not the interior of the arc intersects * the interior of the specified rectangle. * * @param x The X coordinate of the rectangle's upper-left corner. * @param y The Y coordinate of the rectangle's upper-left corner. * @param w The width of the rectangle. * @param h The height of the rectangle. * * @return <CODE>true</CODE> if the arc intersects the rectangle, * <CODE>false</CODE> if the arc doesn't intersect the rectangle. */
public boolean intersects(float x, float y, float w, float h) { float aw = this.width; float ah = this.height; if ( w <= 0 || h <= 0 || aw <= 0 || ah <= 0 ) { return false; } float ext = extent; if (ext == 0) { return false; } float ax = this.x; float ay = this.y; float axw = ax + aw; float ayh = ay + ah; float xw = x + w; float yh = y + h; // check bbox if (x >= axw || y >= ayh || xw <= ax || yh <= ay) { return false; } // extract necessary data float axc = getCenterX(); float ayc = getCenterY(); // inlined getStartPoint double sangle = Math.toRadians(-start); float sx = (float) (this.x + (Math.cos(sangle) * 0.5 + 0.5) * width); float sy = (float) (this.y + (Math.sin(sangle) * 0.5 + 0.5) * height); // inlined getEndPoint double eangle = Math.toRadians(-start - extent); float ex = (float) (this.x + (Math.cos(eangle) * 0.5 + 0.5) * width); float ey = (float) (this.y + (Math.sin(eangle) * 0.5 + 0.5) * height); /* * Try to catch rectangles that intersect arc in areas * outside of rectagle with left top corner coordinates * (min(center x, start point x, end point x), * min(center y, start point y, end point y)) * and rigth bottom corner coordinates * (max(center x, start point x, end point x), * max(center y, start point y, end point y)). * So we'll check axis segments outside of rectangle above. */ if (ayc >= y && ayc <= yh) { // 0 and 180 if ((sx < xw && ex < xw && axc < xw && axw > x && containsAngle(0)) || (sx > x && ex > x && axc > x && ax < xw && containsAngle(180))) { return true; } } if (axc >= x && axc <= xw) { // 90 and 270 if ((sy > y && ey > y && ayc > y && ay < yh && containsAngle(90)) || (sy < yh && ey < yh && ayc < yh && ayh > y && containsAngle(270))) { return true; } } /* * For PIE we should check intersection with pie slices; * also we should do the same for arcs with extent is greater * than 180, because we should cover case of rectangle, which * situated between center of arc and chord, but does not * intersect the chord. */ if (type == PIE || Math.abs(ext) > 180) { // for PIE: try to find intersections with pie slices if (Shape.intersectsLine(x, y, w, h, axc, ayc, sx, sy) || Shape.intersectsLine(x, y, w, h, axc, ayc, ex, ey)) { return true; } } else { // for CHORD and OPEN: try to find intersections with chord if (Shape.intersectsLine(x, y, w, h, sx, sy, ex, ey)) { return true; } } // finally check the rectangle corners inside the arc if (contains(x, y) || contains(x + w, y) || contains(x, y + h) || contains(x + w, y + h)) { return true; } return false; }
Determines whether or not the interior of the arc entirely contains the specified rectangle.
Params:
  • x – The X coordinate of the rectangle's upper-left corner.
  • y – The Y coordinate of the rectangle's upper-left corner.
  • w – The width of the rectangle.
  • h – The height of the rectangle.
Returns:true if the arc contains the rectangle, false if the arc doesn't contain the rectangle.
/** * Determines whether or not the interior of the arc entirely contains * the specified rectangle. * * @param x The X coordinate of the rectangle's upper-left corner. * @param y The Y coordinate of the rectangle's upper-left corner. * @param w The width of the rectangle. * @param h The height of the rectangle. * * @return <CODE>true</CODE> if the arc contains the rectangle, * <CODE>false</CODE> if the arc doesn't contain the rectangle. */
public boolean contains(float x, float y, float w, float h) { if (!(contains(x, y) && contains(x + w, y) && contains(x, y + h) && contains(x + w, y + h))) { return false; } // If the shape is convex then we have done all the testing // we need. Only PIE arcs can be concave and then only if // the angular extents are greater than 180 degrees. if (type != PIE || Math.abs(extent) <= 180.0) { return true; } // For a PIE shape we have an additional test for the case where // the angular extents are greater than 180 degrees and all four // rectangular corners are inside the shape but one of the // rectangle edges spans across the "missing wedge" of the arc. // We can test for this case by checking if the rectangle intersects // either of the pie angle segments. float halfW = getWidth() / 2f; float halfH = getHeight() / 2f; float xc = x + halfW; float yc = y + halfH; float angle = (float) Math.toRadians(-start); float xe = (float) (xc + halfW * Math.cos(angle)); float ye = (float) (yc + halfH * Math.sin(angle)); if (Shape.intersectsLine(x, y, w, h, xc, yc, xe, ye)) { return false; } angle += (float) Math.toRadians(-extent); xe = (float) (xc + halfW * Math.cos(angle)); ye = (float) (yc + halfH * Math.sin(angle)); return !Shape.intersectsLine(x, y, w, h, xc, yc, xe, ye); }
Returns an iteration object that defines the boundary of the arc. This iterator is multithread safe. Arc2D guarantees that modifications to the geometry of the arc do not affect any iterations of that geometry that are already in process.
Params:
  • tx – an optional BaseTransform to be applied to the coordinates as they are returned in the iteration, or null if the untransformed coordinates are desired.
Returns:A PathIterator that defines the arc's boundary.
/** * Returns an iteration object that defines the boundary of the * arc. * This iterator is multithread safe. * <code>Arc2D</code> guarantees that * modifications to the geometry of the arc * do not affect any iterations of that geometry that * are already in process. * * @param tx an optional <CODE>BaseTransform</CODE> to be applied * to the coordinates as they are returned in the iteration, or null * if the untransformed coordinates are desired. * * @return A <CODE>PathIterator</CODE> that defines the arc's boundary. */
public PathIterator getPathIterator(BaseTransform tx) { return new ArcIterator(this, tx); } @Override public Arc2D copy() { return new Arc2D(x, y, width, height, start, extent, type); }
Returns the hashcode for this Arc2D.
Returns:the hashcode for this Arc2D.
/** * Returns the hashcode for this <code>Arc2D</code>. * @return the hashcode for this <code>Arc2D</code>. */
@Override public int hashCode() { int bits = java.lang.Float.floatToIntBits(x); bits += java.lang.Float.floatToIntBits(y) * 37; bits += java.lang.Float.floatToIntBits(width) * 43; bits += java.lang.Float.floatToIntBits(height) * 47; bits += java.lang.Float.floatToIntBits(start) * 53; bits += java.lang.Float.floatToIntBits(extent) * 59; bits += getArcType() * 61; return bits; }
Determines whether or not the specified Object is equal to this Arc2D. The specified Object is equal to this Arc2D if it is an instance of Arc2D and if its location, size, arc extents and type are the same as this Arc2D.
Params:
  • obj – an Object to be compared with this Arc2D.
Returns: true if obj is an instance of Arc2D and has the same values; false otherwise.
/** * Determines whether or not the specified <code>Object</code> is * equal to this <code>Arc2D</code>. The specified * <code>Object</code> is equal to this <code>Arc2D</code> * if it is an instance of <code>Arc2D</code> and if its * location, size, arc extents and type are the same as this * <code>Arc2D</code>. * @param obj an <code>Object</code> to be compared with this * <code>Arc2D</code>. * @return <code>true</code> if <code>obj</code> is an instance * of <code>Arc2D</code> and has the same values; * <code>false</code> otherwise. */
@Override public boolean equals(Object obj) { if (obj == this) return true; if (obj instanceof Arc2D) { Arc2D a2d = (Arc2D) obj; return ((x == a2d.x) && (y == a2d.y) && (width == a2d.width) && (height == a2d.height) && (start == a2d.start) && (extent == a2d.extent) && (type == a2d.type)); } return false; } }