/* Copyright (c) 2001-2019, The HSQL Development Group
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of the HSQL Development Group nor the names of its
 * contributors may be used to endorse or promote products derived from this
 * software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL HSQL DEVELOPMENT GROUP, HSQLDB.ORG,
 * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */


package org.hsqldb.lib;

Maintains an ordered integer index. Equal keys are allowed. findXXX() methods return the array index into the list containing a matching key, or or -1 if not found.

Author:Fred Toussi (fredt@users dot sourceforge.net)
Version:2.5.0
Since:2.3.3
/** * Maintains an ordered integer index. Equal keys are allowed. * * findXXX() methods return the array index into the list * containing a matching key, or or -1 if not found.<p> * * @author Fred Toussi (fredt@users dot sourceforge.net) * @version 2.5.0 * @since 2.3.3 */
public class IntIndex { private int count = 0; private int capacity; private boolean sorted = true; private final boolean fixedSize; private int[] keys; // private int targetSearchValue; public IntIndex(int capacity, boolean fixedSize) { this.capacity = capacity; this.keys = new int[capacity]; this.fixedSize = fixedSize; } public synchronized int getKey(int i) { if (i < 0 || i >= count) { throw new IndexOutOfBoundsException(); } return keys[i]; }
Modifies an existing pair.
Params:
  • i – the index
  • key – the key
/** * Modifies an existing pair. * @param i the index * @param key the key */
public synchronized void setKey(int i, int key) { if (i < 0 || i >= count) { throw new IndexOutOfBoundsException(); } sorted = false; keys[i] = key; } public synchronized int size() { return count; } public synchronized int capacity() { return capacity; } public int[] getKeys() { return keys; } public synchronized long getTotalValues() { long total = 0; for (int i = 0; i < count; i++) { total += keys[i]; } return total; }
Adds a key into the table.
Params:
  • key – the key
Returns:true or false depending on success
/** * Adds a key into the table. * * @param key the key * @return true or false depending on success */
public synchronized boolean addUnsorted(int key) { if (count == capacity) { if (fixedSize) { return false; } else { doubleCapacity(); } } if (sorted && count != 0) { if (key < keys[count - 1]) { sorted = false; } } keys[count] = key; count++; return true; }
Adds a key into the table with the guarantee that the key is equal or larger than the largest existing key. This prevents a sort from taking place on next call to find()
Params:
  • key – the key
Returns:true or false depending on success
/** * Adds a key into the table with the guarantee that the key * is equal or larger than the largest existing key. This prevents a sort * from taking place on next call to find() * * @param key the key * @return true or false depending on success */
public synchronized boolean addSorted(int key) { if (count == capacity) { if (fixedSize) { return false; } else { doubleCapacity(); } } if (count != 0) { if (key < keys[count - 1]) { return false; } } keys[count] = key; count++; return true; }
Adds a key, ensuring no duplicate key already exists in the current search target column.
Params:
  • key – the key
Returns:true or false depending on success
/** * Adds a key, ensuring no duplicate key already exists in the * current search target column. * @param key the key * @return true or false depending on success */
public synchronized boolean addUnique(int key) { if (count == capacity) { if (fixedSize) { return false; } else { doubleCapacity(); } } if (!sorted) { fastQuickSort(); } targetSearchValue = key; int i = binaryEmptySlotSearch(); if (i == -1) { return false; } if (count != i) { moveRows(i, i + 1, count - i); } keys[i] = key; count++; return true; }
Adds a key, maintaining sort order on current search target column.
Params:
  • key – the key
Returns:index of added key or -1 if full
/** * Adds a key, maintaining sort order on * current search target column. * @param key the key * @return index of added key or -1 if full */
public synchronized int add(int key) { if (count == capacity) { if (fixedSize) { return -1; } else { doubleCapacity(); } } if (!sorted) { fastQuickSort(); } targetSearchValue = key; int i = binarySlotSearch(); if (count != i) { moveRows(i, i + 1, count - i); } keys[i] = key; count++; return i; } public void clear() { removeAll(); } public synchronized int findFirstIndexUnsorted(int value) { for (int i = 0; i < count; i++) { if (keys[i] == value) { return i; } } return -1; }
Params:
  • value – the value
Returns:the index
/** * @param value the value * @return the index */
public synchronized int findFirstGreaterEqualKeyIndex(int value) { int index = findFirstGreaterEqualSlotIndex(value); return index == count ? -1 : index; }
Params:
  • value – the value
Returns:the index
/** * @param value the value * @return the index */
public synchronized int findFirstEqualKeyIndex(int value) { if (!sorted) { fastQuickSort(); } targetSearchValue = value; return binaryFirstSearch(); }
Params:
  • number – the number of consecutive keys required
Returns:the index or -1 if not found
/** * @param number the number of consecutive keys required * @return the index or -1 if not found */
public synchronized int findFirstConsecutiveKeys(int number) { int baseIndex = -1; if (count == 0) { return -1; } if (!sorted) { fastQuickSort(); } if (number == 1) { return 0; } for (int i = 1; i < count; i++) { if (keys[i - 1] == keys[i] - 1) { if (baseIndex == -1) { baseIndex = i - 1; } if (i - baseIndex + 1 == number) { return baseIndex; } } else { baseIndex = -1; } } return -1; }
Params:
  • number – the number of consecutive keys required
Returns:the first key in series or def if not found
/** * @param number the number of consecutive keys required * @return the first key in series or def if not found */
public synchronized int removeFirstConsecutiveKeys(int number, int def) { int baseIndex = findFirstConsecutiveKeys(number); if (baseIndex == -1) { return def; } int result = keys[baseIndex]; this.removeRange(baseIndex, baseIndex + number); return result; }
This method is similar to findFirstGreaterEqualKeyIndex(int) but returns the index of the empty row past the end of the array if the search value is larger than all the values / keys in the searched column.
Params:
  • value – the value
Returns:the index
/** * This method is similar to findFirstGreaterEqualKeyIndex(int) but * returns the index of the empty row past the end of the array if * the search value is larger than all the values / keys in the searched * column. * @param value the value * @return the index */
public synchronized int findFirstGreaterEqualSlotIndex(int value) { if (!sorted) { fastQuickSort(); } targetSearchValue = value; return binarySlotSearch(); }
Returns the index of the lowest element == the given search target, or -1
Returns:index or -1 if not found
/** * Returns the index of the lowest element == the given search target, * or -1 * @return index or -1 if not found */
private int binaryFirstSearch() { int low = 0; int high = count; int mid = 0; int compare = 0; int found = count; while (low < high) { mid = (low + high) >>> 1; compare = compare(mid); if (compare < 0) { high = mid; } else if (compare > 0) { low = mid + 1; } else { high = mid; found = mid; } } return found == count ? -1 : found; }
Returns the index of the lowest element >= the given search target, or count @return the index
/** * Returns the index of the lowest element >= the given search target, * or count * @return the index */
private int binarySlotSearch() { int low = 0; int high = count; int mid = 0; int compare = 0; while (low < high) { mid = (low + high) >>> 1; compare = compare(mid); if (compare <= 0) { high = mid; } else { low = mid + 1; } } return low; }
Returns the index of the lowest element > the given search target or count or -1 if target is found
Returns:the index
/** * Returns the index of the lowest element > the given search target * or count or -1 if target is found * @return the index */
private int binaryEmptySlotSearch() { int low = 0; int high = count; int mid = 0; int compare = 0; while (low < high) { mid = (low + high) >>> 1; compare = compare(mid); if (compare < 0) { high = mid; } else if (compare > 0) { low = mid + 1; } else { return -1; } } return low; } public synchronized void sort() { fastQuickSort(); }
fast quicksort using a stack on the heap to reduce stack use
/** * fast quicksort using a stack on the heap to reduce stack use */
private synchronized void fastQuickSort() { DoubleIntIndex indices = new DoubleIntIndex(32); int threshold = 16; indices.push(0, count - 1); while (indices.size() > 0) { int start = indices.peekKey(); int end = indices.peekValue(); indices.pop(); if (end - start >= threshold) { int pivot = partition(start, end, start + ((end - start) >>> 1)); indices.push(start, pivot - 1); indices.push(pivot + 1, end); } else { insertionSort(start, end); } } sorted = true; } private int partition(int start, int end, int pivot) { int store = start; swap(pivot, end); for (int i = start; i <= end - 1; i++) { if (lessThan(i, end)) { swap(i, store); store++; } } swap(store, end); return store; }
fast quicksort with recursive quicksort implementation
/** * fast quicksort with recursive quicksort implementation */
private synchronized void fastQuickSortRecursive() { quickSort(0, count - 1); insertionSort(0, count - 1); sorted = true; } private void quickSort(int l, int r) { int M = 16; int i; int j; int v; if ((r - l) > M) { i = (r + l) >>> 1; if (lessThan(i, l)) { swap(l, i); // Tri-Median Methode! } if (lessThan(r, l)) { swap(l, r); } if (lessThan(r, i)) { swap(i, r); } j = r - 1; swap(i, j); i = l; v = j; for (;;) { while (lessThan(++i, v)) {} while (lessThan(v, --j)) {} if (j < i) { break; } swap(i, j); } swap(i, r - 1); quickSort(l, j); quickSort(i + 1, r); } } private void insertionSort(int lo0, int hi0) { int i; int j; for (i = lo0 + 1; i <= hi0; i++) { j = i; while ((j > lo0) && lessThan(i, j - 1)) { j--; } if (i != j) { moveAndInsertRow(i, j); } } } protected void moveAndInsertRow(int i, int j) { int col1 = keys[i]; moveRows(j, j + 1, i - j); keys[j] = col1; } protected void swap(int i1, int i2) { int col1 = keys[i1]; keys[i1] = keys[i2]; keys[i2] = col1; }
Check if targeted column value in the row indexed i is less than the search target object.
Params:
  • i – the index
Returns:-1, 0 or +1
/** * Check if targeted column value in the row indexed i is less than the * search target object. * @param i the index * @return -1, 0 or +1 */
protected int compare(int i) { if (targetSearchValue > keys[i]) { return 1; } else if (targetSearchValue < keys[i]) { return -1; } return 0; }
Check if row indexed i is less than row indexed j
Params:
  • i – the first index
  • j – the second index
Returns:true or false
/** * Check if row indexed i is less than row indexed j * @param i the first index * @param j the second index * @return true or false */
protected boolean lessThan(int i, int j) { if (keys[i] < keys[j]) { return true; } return false; } protected void moveRows(int fromIndex, int toIndex, int rows) { System.arraycopy(keys, fromIndex, keys, toIndex, rows); } protected void doubleCapacity() { keys = (int[]) ArrayUtil.resizeArray(keys, capacity * 2); capacity *= 2; } public synchronized void removeRange(int start, int limit) { ArrayUtil.adjustArray(ArrayUtil.CLASS_CODE_INT, keys, count, start, start - limit); count -= (limit - start); } public synchronized void removeAll() { ArrayUtil.clearArray(ArrayUtil.CLASS_CODE_INT, keys, 0, count); count = 0; } public final synchronized void remove(int position) { moveRows(position + 1, position, count - position - 1); count--; keys[count] = 0; } }