/*
 * Copyright (c) 2011, 2020 Oracle and/or its affiliates. All rights reserved.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License v. 2.0, which is available at
 * http://www.eclipse.org/legal/epl-2.0.
 *
 * This Source Code may also be made available under the following Secondary
 * Licenses when the conditions for such availability set forth in the
 * Eclipse Public License v. 2.0 are satisfied: GNU General Public License,
 * version 2 with the GNU Classpath Exception, which is available at
 * https://www.gnu.org/software/classpath/license.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
 */

package org.glassfish.grizzly.compression.lzma.impl;

import java.io.IOException;

import org.glassfish.grizzly.Buffer;
import org.glassfish.grizzly.compression.lzma.LZMAEncoder;
import org.glassfish.grizzly.compression.lzma.impl.lz.BinTree;
import org.glassfish.grizzly.compression.lzma.impl.rangecoder.BitTreeEncoder;
import org.glassfish.grizzly.compression.lzma.impl.rangecoder.RangeEncoder;
import org.glassfish.grizzly.memory.MemoryManager;

RangeEncoder
Author:Igor Pavlov
/** * RangeEncoder * * @author Igor Pavlov */
public class Encoder { public static final int EMatchFinderTypeBT2 = 0; public static final int EMatchFinderTypeBT4 = 1; static final int kIfinityPrice = 0xFFFFFFF; static final byte[] g_FastPos = new byte[1 << 11]; static { int kFastSlots = 22; int c = 2; g_FastPos[0] = 0; g_FastPos[1] = 1; for (int slotFast = 2; slotFast < kFastSlots; slotFast++) { int k = 1 << (slotFast >> 1) - 1; for (int j = 0; j < k; j++, c++) { g_FastPos[c] = (byte) slotFast; } } } static int getPosSlot(int pos) { if (pos < 1 << 11) { return g_FastPos[pos]; } if (pos < 1 << 21) { return g_FastPos[pos >> 10] + 20; } return g_FastPos[pos >> 20] + 40; } static int getPosSlot2(int pos) { if (pos < 1 << 17) { return g_FastPos[pos >> 6] + 12; } if (pos < 1 << 27) { return g_FastPos[pos >> 16] + 32; } return g_FastPos[pos >> 26] + 52; } int _state = Base.stateInit(); byte _previousByte; final int[] _repDistances = new int[Base.kNumRepDistances]; void baseInit() { _state = Base.stateInit(); _previousByte = 0; for (int i = 0; i < Base.kNumRepDistances; i++) { _repDistances[i] = 0; } } static final int kDefaultDictionaryLogSize = 22; static final int kNumFastBytesDefault = 0x20; static class LiteralEncoder { static class Encoder2 { final short[] m_Encoders = new short[0x300]; public void init() { RangeEncoder.initBitModels(m_Encoders); } public void encode(RangeEncoder rangeEncoder, byte symbol) throws IOException { int context = 1; for (int i = 7; i >= 0; i--) { int bit = symbol >> i & 1; rangeEncoder.encode(m_Encoders, context, bit); context = context << 1 | bit; } } public void encodeMatched(RangeEncoder rangeEncoder, byte matchByte, byte symbol) throws IOException { int context = 1; boolean same = true; for (int i = 7; i >= 0; i--) { int bit = symbol >> i & 1; int state = context; if (same) { int matchBit = matchByte >> i & 1; state += 1 + matchBit << 8; same = matchBit == bit; } rangeEncoder.encode(m_Encoders, state, bit); context = context << 1 | bit; } } public int getPrice(boolean matchMode, byte matchByte, byte symbol) { int price = 0; int context = 1; int i = 7; if (matchMode) { for (; i >= 0; i--) { int matchBit = matchByte >> i & 1; int bit = symbol >> i & 1; price += RangeEncoder.getPrice(m_Encoders[(1 + matchBit << 8) + context], bit); context = context << 1 | bit; if (matchBit != bit) { i--; break; } } } for (; i >= 0; i--) { int bit = symbol >> i & 1; price += RangeEncoder.getPrice(m_Encoders[context], bit); context = context << 1 | bit; } return price; } } Encoder2[] m_Coders; int m_NumPrevBits; int m_NumPosBits; int m_PosMask; public void create(int numPosBits, int numPrevBits) { if (m_Coders != null && m_NumPrevBits == numPrevBits && m_NumPosBits == numPosBits) { return; } m_NumPosBits = numPosBits; m_PosMask = (1 << numPosBits) - 1; m_NumPrevBits = numPrevBits; int numStates = 1 << m_NumPrevBits + m_NumPosBits; m_Coders = new Encoder2[numStates]; for (int i = 0; i < numStates; i++) { m_Coders[i] = new Encoder2(); } } public void init() { int numStates = 1 << m_NumPrevBits + m_NumPosBits; for (int i = 0; i < numStates; i++) { m_Coders[i].init(); } } public Encoder2 getSubCoder(int pos, byte prevByte) { return m_Coders[((pos & m_PosMask) << m_NumPrevBits) + ((prevByte & 0xFF) >>> 8 - m_NumPrevBits)]; } } static class LenEncoder { final short[] _choice = new short[2]; final BitTreeEncoder[] _lowCoder = new BitTreeEncoder[Base.kNumPosStatesEncodingMax]; final BitTreeEncoder[] _midCoder = new BitTreeEncoder[Base.kNumPosStatesEncodingMax]; final BitTreeEncoder _highCoder = new BitTreeEncoder(Base.kNumHighLenBits); public LenEncoder() { for (int posState = 0; posState < Base.kNumPosStatesEncodingMax; posState++) { _lowCoder[posState] = new BitTreeEncoder(Base.kNumLowLenBits); _midCoder[posState] = new BitTreeEncoder(Base.kNumMidLenBits); } } public void init(int numPosStates) { RangeEncoder.initBitModels(_choice); for (int posState = 0; posState < numPosStates; posState++) { _lowCoder[posState].init(); _midCoder[posState].init(); } _highCoder.init(); } public void encode(RangeEncoder rangeEncoder, int symbol, int posState) throws IOException { if (symbol < Base.kNumLowLenSymbols) { rangeEncoder.encode(_choice, 0, 0); _lowCoder[posState].encode(rangeEncoder, symbol); } else { symbol -= Base.kNumLowLenSymbols; rangeEncoder.encode(_choice, 0, 1); if (symbol < Base.kNumMidLenSymbols) { rangeEncoder.encode(_choice, 1, 0); _midCoder[posState].encode(rangeEncoder, symbol); } else { rangeEncoder.encode(_choice, 1, 1); _highCoder.encode(rangeEncoder, symbol - Base.kNumMidLenSymbols); } } } public void setPrices(int posState, int numSymbols, int[] prices, int st) { int a0 = RangeEncoder.getPrice0(_choice[0]); int a1 = RangeEncoder.getPrice1(_choice[0]); int b0 = a1 + RangeEncoder.getPrice0(_choice[1]); int b1 = a1 + RangeEncoder.getPrice1(_choice[1]); int i; for (i = 0; i < Base.kNumLowLenSymbols; i++) { if (i >= numSymbols) { return; } prices[st + i] = a0 + _lowCoder[posState].getPrice(i); } for (; i < Base.kNumLowLenSymbols + Base.kNumMidLenSymbols; i++) { if (i >= numSymbols) { return; } prices[st + i] = b0 + _midCoder[posState].getPrice(i - Base.kNumLowLenSymbols); } for (; i < numSymbols; i++) { prices[st + i] = b1 + _highCoder.getPrice(i - Base.kNumLowLenSymbols - Base.kNumMidLenSymbols); } } } public static final int kNumLenSpecSymbols = Base.kNumLowLenSymbols + Base.kNumMidLenSymbols; static class LenPriceTableEncoder extends LenEncoder { final int[] _prices = new int[Base.kNumLenSymbols << Base.kNumPosStatesBitsEncodingMax]; int _tableSize; final int[] _counters = new int[Base.kNumPosStatesEncodingMax]; public void setTableSize(int tableSize) { _tableSize = tableSize; } public int getPrice(int symbol, int posState) { return _prices[posState * Base.kNumLenSymbols + symbol]; } void updateTable(int posState) { setPrices(posState, _tableSize, _prices, posState * Base.kNumLenSymbols); _counters[posState] = _tableSize; } public void updateTables(int numPosStates) { for (int posState = 0; posState < numPosStates; posState++) { updateTable(posState); } } @Override public void encode(RangeEncoder rangeEncoder, int symbol, int posState) throws IOException { super.encode(rangeEncoder, symbol, posState); if (--_counters[posState] == 0) { updateTable(posState); } } } static final int kNumOpts = 1 << 12; static class Optimal { public int State; public boolean Prev1IsChar; public boolean Prev2; public int PosPrev2; public int BackPrev2; public int Price; public int PosPrev; public int BackPrev; public int Backs0; public int Backs1; public int Backs2; public int Backs3; public void makeAsChar() { BackPrev = -1; Prev1IsChar = false; } public void makeAsShortRep() { BackPrev = 0; Prev1IsChar = false; } public boolean isShortRep() { return BackPrev == 0; } } final Optimal[] _optimum = new Optimal[kNumOpts]; BinTree _matchFinder = null; final RangeEncoder _rangeEncoder = new RangeEncoder(); final short[] _isMatch = new short[Base.kNumStates << Base.kNumPosStatesBitsMax]; final short[] _isRep = new short[Base.kNumStates]; final short[] _isRepG0 = new short[Base.kNumStates]; final short[] _isRepG1 = new short[Base.kNumStates]; final short[] _isRepG2 = new short[Base.kNumStates]; final short[] _isRep0Long = new short[Base.kNumStates << Base.kNumPosStatesBitsMax]; final BitTreeEncoder[] _posSlotEncoder = new BitTreeEncoder[Base.kNumLenToPosStates]; // kNumPosSlotBits final short[] _posEncoders = new short[Base.kNumFullDistances - Base.kEndPosModelIndex]; final BitTreeEncoder _posAlignEncoder = new BitTreeEncoder(Base.kNumAlignBits); final LenPriceTableEncoder _lenEncoder = new LenPriceTableEncoder(); final LenPriceTableEncoder _repMatchLenEncoder = new LenPriceTableEncoder(); final LiteralEncoder _literalEncoder = new LiteralEncoder(); final int[] _matchDistances = new int[Base.kMatchMaxLen * 2 + 2]; int _numFastBytes = kNumFastBytesDefault; int _longestMatchLength; int _numDistancePairs; int _additionalOffset; int _optimumEndIndex; int _optimumCurrentIndex; boolean _longestMatchWasFound; final int[] _posSlotPrices = new int[1 << Base.kNumPosSlotBits + Base.kNumLenToPosStatesBits]; final int[] _distancesPrices = new int[Base.kNumFullDistances << Base.kNumLenToPosStatesBits]; final int[] _alignPrices = new int[Base.kAlignTableSize]; int _alignPriceCount; int _distTableSize = kDefaultDictionaryLogSize * 2; int _posStateBits = 2; int _posStateMask = 4 - 1; int _numLiteralPosStateBits = 0; int _numLiteralContextBits = 3; int _dictionarySize = 1 << kDefaultDictionaryLogSize; int _dictionarySizePrev = -1; int _numFastBytesPrev = -1; long nowPos64; boolean _finished; Buffer _src; int _matchFinderType = EMatchFinderTypeBT4; boolean _writeEndMark = false; boolean _needReleaseMFStream = false; void create() { if (_matchFinder == null) { BinTree bt = new BinTree(); int numHashBytes = 4; if (_matchFinderType == EMatchFinderTypeBT2) { numHashBytes = 2; } bt.setType(numHashBytes); _matchFinder = bt; } _literalEncoder.create(_numLiteralPosStateBits, _numLiteralContextBits); if (_dictionarySize == _dictionarySizePrev && _numFastBytesPrev == _numFastBytes) { return; } _matchFinder.create(_dictionarySize, kNumOpts, _numFastBytes, Base.kMatchMaxLen + 1); _dictionarySizePrev = _dictionarySize; _numFastBytesPrev = _numFastBytes; } public Encoder() { for (int i = 0; i < kNumOpts; i++) { _optimum[i] = new Optimal(); } for (int i = 0; i < Base.kNumLenToPosStates; i++) { _posSlotEncoder[i] = new BitTreeEncoder(Base.kNumPosSlotBits); } } void setWriteEndMarkerMode(boolean writeEndMarker) { _writeEndMark = writeEndMarker; } void init() { baseInit(); _rangeEncoder.init(); RangeEncoder.initBitModels(_isMatch); RangeEncoder.initBitModels(_isRep0Long); RangeEncoder.initBitModels(_isRep); RangeEncoder.initBitModels(_isRepG0); RangeEncoder.initBitModels(_isRepG1); RangeEncoder.initBitModels(_isRepG2); RangeEncoder.initBitModels(_posEncoders); _literalEncoder.init(); for (int i = 0; i < Base.kNumLenToPosStates; i++) { _posSlotEncoder[i].init(); } _lenEncoder.init(1 << _posStateBits); _repMatchLenEncoder.init(1 << _posStateBits); _posAlignEncoder.init(); _longestMatchWasFound = false; _optimumEndIndex = 0; _optimumCurrentIndex = 0; _additionalOffset = 0; } int readMatchDistances() throws java.io.IOException { int lenRes = 0; _numDistancePairs = _matchFinder.getMatches(_matchDistances); if (_numDistancePairs > 0) { lenRes = _matchDistances[_numDistancePairs - 2]; if (lenRes == _numFastBytes) { lenRes += _matchFinder.getMatchLen(lenRes - 1, _matchDistances[_numDistancePairs - 1], Base.kMatchMaxLen - lenRes); } } _additionalOffset++; return lenRes; } void movePos(int num) throws java.io.IOException { if (num > 0) { _matchFinder.skip(num); _additionalOffset += num; } } int getRepLen1Price(int state, int posState) { return RangeEncoder.getPrice0(_isRepG0[state]) + RangeEncoder.getPrice0(_isRep0Long[(state << Base.kNumPosStatesBitsMax) + posState]); } int getPureRepPrice(int repIndex, int state, int posState) { int price; if (repIndex == 0) { price = RangeEncoder.getPrice0(_isRepG0[state]); price += RangeEncoder.getPrice1(_isRep0Long[(state << Base.kNumPosStatesBitsMax) + posState]); } else { price = RangeEncoder.getPrice1(_isRepG0[state]); if (repIndex == 1) { price += RangeEncoder.getPrice0(_isRepG1[state]); } else { price += RangeEncoder.getPrice1(_isRepG1[state]); price += RangeEncoder.getPrice(_isRepG2[state], repIndex - 2); } } return price; } int getRepPrice(int repIndex, int len, int state, int posState) { int price = _repMatchLenEncoder.getPrice(len - Base.kMatchMinLen, posState); return price + getPureRepPrice(repIndex, state, posState); } int getPosLenPrice(int pos, int len, int posState) { int price; int lenToPosState = Base.getLenToPosState(len); if (pos < Base.kNumFullDistances) { price = _distancesPrices[lenToPosState * Base.kNumFullDistances + pos]; } else { price = _posSlotPrices[(lenToPosState << Base.kNumPosSlotBits) + getPosSlot2(pos)] + _alignPrices[pos & Base.kAlignMask]; } return price + _lenEncoder.getPrice(len - Base.kMatchMinLen, posState); } int backward(int cur) { _optimumEndIndex = cur; int posMem = _optimum[cur].PosPrev; int backMem = _optimum[cur].BackPrev; do { if (_optimum[cur].Prev1IsChar) { _optimum[posMem].makeAsChar(); _optimum[posMem].PosPrev = posMem - 1; if (_optimum[cur].Prev2) { _optimum[posMem - 1].Prev1IsChar = false; _optimum[posMem - 1].PosPrev = _optimum[cur].PosPrev2; _optimum[posMem - 1].BackPrev = _optimum[cur].BackPrev2; } } int posPrev = posMem; int backCur = backMem; backMem = _optimum[posPrev].BackPrev; posMem = _optimum[posPrev].PosPrev; _optimum[posPrev].BackPrev = backCur; _optimum[posPrev].PosPrev = cur; cur = posPrev; } while (cur > 0); backRes = _optimum[0].BackPrev; _optimumCurrentIndex = _optimum[0].PosPrev; return _optimumCurrentIndex; } final int[] reps = new int[Base.kNumRepDistances]; final int[] repLens = new int[Base.kNumRepDistances]; int backRes; int getOptimum(int position) throws IOException { if (_optimumEndIndex != _optimumCurrentIndex) { int lenRes = _optimum[_optimumCurrentIndex].PosPrev - _optimumCurrentIndex; backRes = _optimum[_optimumCurrentIndex].BackPrev; _optimumCurrentIndex = _optimum[_optimumCurrentIndex].PosPrev; return lenRes; } _optimumCurrentIndex = _optimumEndIndex = 0; int lenMain, numDistancePairs; if (!_longestMatchWasFound) { lenMain = readMatchDistances(); } else { lenMain = _longestMatchLength; _longestMatchWasFound = false; } numDistancePairs = _numDistancePairs; int numAvailableBytes = _matchFinder.getNumAvailableBytes() + 1; if (numAvailableBytes < 2) { backRes = -1; return 1; } if (numAvailableBytes > Base.kMatchMaxLen) { numAvailableBytes = Base.kMatchMaxLen; } int repMaxIndex = 0; int i; for (i = 0; i < Base.kNumRepDistances; i++) { reps[i] = _repDistances[i]; repLens[i] = _matchFinder.getMatchLen(0 - 1, reps[i], Base.kMatchMaxLen); if (repLens[i] > repLens[repMaxIndex]) { repMaxIndex = i; } } if (repLens[repMaxIndex] >= _numFastBytes) { backRes = repMaxIndex; int lenRes = repLens[repMaxIndex]; movePos(lenRes - 1); return lenRes; } if (lenMain >= _numFastBytes) { backRes = _matchDistances[numDistancePairs - 1] + Base.kNumRepDistances; movePos(lenMain - 1); return lenMain; } byte currentByte = _matchFinder.getIndexByte(0 - 1); byte matchByte = _matchFinder.getIndexByte(0 - _repDistances[0] - 1 - 1); if (lenMain < 2 && currentByte != matchByte && repLens[repMaxIndex] < 2) { backRes = -1; return 1; } _optimum[0].State = _state; int posState = position & _posStateMask; _optimum[1].Price = RangeEncoder.getPrice0(_isMatch[(_state << Base.kNumPosStatesBitsMax) + posState]) + _literalEncoder.getSubCoder(position, _previousByte).getPrice(!Base.stateIsCharState(_state), matchByte, currentByte); _optimum[1].makeAsChar(); int matchPrice = RangeEncoder.getPrice1(_isMatch[(_state << Base.kNumPosStatesBitsMax) + posState]); int repMatchPrice = matchPrice + RangeEncoder.getPrice1(_isRep[_state]); if (matchByte == currentByte) { int shortRepPrice = repMatchPrice + getRepLen1Price(_state, posState); if (shortRepPrice < _optimum[1].Price) { _optimum[1].Price = shortRepPrice; _optimum[1].makeAsShortRep(); } } int lenEnd = lenMain >= repLens[repMaxIndex] ? lenMain : repLens[repMaxIndex]; if (lenEnd < 2) { backRes = _optimum[1].BackPrev; return 1; } _optimum[1].PosPrev = 0; _optimum[0].Backs0 = reps[0]; _optimum[0].Backs1 = reps[1]; _optimum[0].Backs2 = reps[2]; _optimum[0].Backs3 = reps[3]; int len = lenEnd; do { _optimum[len--].Price = kIfinityPrice; } while (len >= 2); for (i = 0; i < Base.kNumRepDistances; i++) { int repLen = repLens[i]; if (repLen < 2) { continue; } int price = repMatchPrice + getPureRepPrice(i, _state, posState); do { int curAndLenPrice = price + _repMatchLenEncoder.getPrice(repLen - 2, posState); Optimal optimum = _optimum[repLen]; if (curAndLenPrice < optimum.Price) { optimum.Price = curAndLenPrice; optimum.PosPrev = 0; optimum.BackPrev = i; optimum.Prev1IsChar = false; } } while (--repLen >= 2); } int normalMatchPrice = matchPrice + RangeEncoder.getPrice0(_isRep[_state]); len = repLens[0] >= 2 ? repLens[0] + 1 : 2; if (len <= lenMain) { int offs = 0; while (len > _matchDistances[offs]) { offs += 2; } for (;; len++) { int distance = _matchDistances[offs + 1]; int curAndLenPrice = normalMatchPrice + getPosLenPrice(distance, len, posState); Optimal optimum = _optimum[len]; if (curAndLenPrice < optimum.Price) { optimum.Price = curAndLenPrice; optimum.PosPrev = 0; optimum.BackPrev = distance + Base.kNumRepDistances; optimum.Prev1IsChar = false; } if (len == _matchDistances[offs]) { offs += 2; if (offs == numDistancePairs) { break; } } } } int cur = 0; while (true) { cur++; if (cur == lenEnd) { return backward(cur); } int newLen = readMatchDistances(); numDistancePairs = _numDistancePairs; if (newLen >= _numFastBytes) { _longestMatchLength = newLen; _longestMatchWasFound = true; return backward(cur); } position++; int posPrev = _optimum[cur].PosPrev; int state; if (_optimum[cur].Prev1IsChar) { posPrev--; if (_optimum[cur].Prev2) { state = _optimum[_optimum[cur].PosPrev2].State; if (_optimum[cur].BackPrev2 < Base.kNumRepDistances) { state = Base.stateUpdateRep(state); } else { state = Base.stateUpdateMatch(state); } } else { state = _optimum[posPrev].State; } state = Base.stateUpdateChar(state); } else { state = _optimum[posPrev].State; } if (posPrev == cur - 1) { if (_optimum[cur].isShortRep()) { state = Base.stateUpdateShortRep(state); } else { state = Base.stateUpdateChar(state); } } else { int pos; if (_optimum[cur].Prev1IsChar && _optimum[cur].Prev2) { posPrev = _optimum[cur].PosPrev2; pos = _optimum[cur].BackPrev2; state = Base.stateUpdateRep(state); } else { pos = _optimum[cur].BackPrev; if (pos < Base.kNumRepDistances) { state = Base.stateUpdateRep(state); } else { state = Base.stateUpdateMatch(state); } } Optimal opt = _optimum[posPrev]; if (pos < Base.kNumRepDistances) { if (pos == 0) { reps[0] = opt.Backs0; reps[1] = opt.Backs1; reps[2] = opt.Backs2; reps[3] = opt.Backs3; } else if (pos == 1) { reps[0] = opt.Backs1; reps[1] = opt.Backs0; reps[2] = opt.Backs2; reps[3] = opt.Backs3; } else if (pos == 2) { reps[0] = opt.Backs2; reps[1] = opt.Backs0; reps[2] = opt.Backs1; reps[3] = opt.Backs3; } else { reps[0] = opt.Backs3; reps[1] = opt.Backs0; reps[2] = opt.Backs1; reps[3] = opt.Backs2; } } else { reps[0] = pos - Base.kNumRepDistances; reps[1] = opt.Backs0; reps[2] = opt.Backs1; reps[3] = opt.Backs2; } } _optimum[cur].State = state; _optimum[cur].Backs0 = reps[0]; _optimum[cur].Backs1 = reps[1]; _optimum[cur].Backs2 = reps[2]; _optimum[cur].Backs3 = reps[3]; int curPrice = _optimum[cur].Price; currentByte = _matchFinder.getIndexByte(0 - 1); matchByte = _matchFinder.getIndexByte(0 - reps[0] - 1 - 1); posState = position & _posStateMask; int curAnd1Price = curPrice + RangeEncoder.getPrice0(_isMatch[(state << Base.kNumPosStatesBitsMax) + posState]) + _literalEncoder.getSubCoder(position, _matchFinder.getIndexByte(0 - 2)).getPrice(!Base.stateIsCharState(state), matchByte, currentByte); Optimal nextOptimum = _optimum[cur + 1]; boolean nextIsChar = false; if (curAnd1Price < nextOptimum.Price) { nextOptimum.Price = curAnd1Price; nextOptimum.PosPrev = cur; nextOptimum.makeAsChar(); nextIsChar = true; } matchPrice = curPrice + RangeEncoder.getPrice1(_isMatch[(state << Base.kNumPosStatesBitsMax) + posState]); repMatchPrice = matchPrice + RangeEncoder.getPrice1(_isRep[state]); if (matchByte == currentByte && !(nextOptimum.PosPrev < cur && nextOptimum.BackPrev == 0)) { int shortRepPrice = repMatchPrice + getRepLen1Price(state, posState); if (shortRepPrice <= nextOptimum.Price) { nextOptimum.Price = shortRepPrice; nextOptimum.PosPrev = cur; nextOptimum.makeAsShortRep(); nextIsChar = true; } } int numAvailableBytesFull = _matchFinder.getNumAvailableBytes() + 1; numAvailableBytesFull = Math.min(kNumOpts - 1 - cur, numAvailableBytesFull); numAvailableBytes = numAvailableBytesFull; if (numAvailableBytes < 2) { continue; } if (numAvailableBytes > _numFastBytes) { numAvailableBytes = _numFastBytes; } if (!nextIsChar && matchByte != currentByte) { // try Literal + rep0 int t = Math.min(numAvailableBytesFull - 1, _numFastBytes); int lenTest2 = _matchFinder.getMatchLen(0, reps[0], t); if (lenTest2 >= 2) { int state2 = Base.stateUpdateChar(state); int posStateNext = position + 1 & _posStateMask; int nextRepMatchPrice = curAnd1Price + RangeEncoder.getPrice1(_isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]) + RangeEncoder.getPrice1(_isRep[state2]); { int offset = cur + 1 + lenTest2; while (lenEnd < offset) { _optimum[++lenEnd].Price = kIfinityPrice; } int curAndLenPrice = nextRepMatchPrice + getRepPrice(0, lenTest2, state2, posStateNext); Optimal optimum = _optimum[offset]; if (curAndLenPrice < optimum.Price) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur + 1; optimum.BackPrev = 0; optimum.Prev1IsChar = true; optimum.Prev2 = false; } } } } int startLen = 2; // speed optimization for (int repIndex = 0; repIndex < Base.kNumRepDistances; repIndex++) { int lenTest = _matchFinder.getMatchLen(0 - 1, reps[repIndex], numAvailableBytes); if (lenTest < 2) { continue; } int lenTestTemp = lenTest; do { while (lenEnd < cur + lenTest) { _optimum[++lenEnd].Price = kIfinityPrice; } int curAndLenPrice = repMatchPrice + getRepPrice(repIndex, lenTest, state, posState); Optimal optimum = _optimum[cur + lenTest]; if (curAndLenPrice < optimum.Price) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur; optimum.BackPrev = repIndex; optimum.Prev1IsChar = false; } } while (--lenTest >= 2); lenTest = lenTestTemp; if (repIndex == 0) { startLen = lenTest + 1; } // if (_maxMode) if (lenTest < numAvailableBytesFull) { int t = Math.min(numAvailableBytesFull - 1 - lenTest, _numFastBytes); int lenTest2 = _matchFinder.getMatchLen(lenTest, reps[repIndex], t); if (lenTest2 >= 2) { int state2 = Base.stateUpdateRep(state); int posStateNext = position + lenTest & _posStateMask; int curAndLenCharPrice = repMatchPrice + getRepPrice(repIndex, lenTest, state, posState) + RangeEncoder.getPrice0(_isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]) + _literalEncoder.getSubCoder(position + lenTest, _matchFinder.getIndexByte(lenTest - 1 - 1)).getPrice(true, _matchFinder.getIndexByte(lenTest - 1 - (reps[repIndex] + 1)), _matchFinder.getIndexByte(lenTest - 1)); state2 = Base.stateUpdateChar(state2); posStateNext = position + lenTest + 1 & _posStateMask; int nextMatchPrice = curAndLenCharPrice + RangeEncoder.getPrice1(_isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]); int nextRepMatchPrice = nextMatchPrice + RangeEncoder.getPrice1(_isRep[state2]); // for(; lenTest2 >= 2; lenTest2--) { int offset = lenTest + 1 + lenTest2; while (lenEnd < cur + offset) { _optimum[++lenEnd].Price = kIfinityPrice; } int curAndLenPrice = nextRepMatchPrice + getRepPrice(0, lenTest2, state2, posStateNext); Optimal optimum = _optimum[cur + offset]; if (curAndLenPrice < optimum.Price) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur + lenTest + 1; optimum.BackPrev = 0; optimum.Prev1IsChar = true; optimum.Prev2 = true; optimum.PosPrev2 = cur; optimum.BackPrev2 = repIndex; } } } } } if (newLen > numAvailableBytes) { newLen = numAvailableBytes; for (numDistancePairs = 0; newLen > _matchDistances[numDistancePairs]; numDistancePairs += 2) { ; } _matchDistances[numDistancePairs] = newLen; numDistancePairs += 2; } if (newLen >= startLen) { normalMatchPrice = matchPrice + RangeEncoder.getPrice0(_isRep[state]); while (lenEnd < cur + newLen) { _optimum[++lenEnd].Price = kIfinityPrice; } int offs = 0; while (startLen > _matchDistances[offs]) { offs += 2; } for (int lenTest = startLen;; lenTest++) { int curBack = _matchDistances[offs + 1]; int curAndLenPrice = normalMatchPrice + getPosLenPrice(curBack, lenTest, posState); Optimal optimum = _optimum[cur + lenTest]; if (curAndLenPrice < optimum.Price) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur; optimum.BackPrev = curBack + Base.kNumRepDistances; optimum.Prev1IsChar = false; } if (lenTest == _matchDistances[offs]) { if (lenTest < numAvailableBytesFull) { int t = Math.min(numAvailableBytesFull - 1 - lenTest, _numFastBytes); int lenTest2 = _matchFinder.getMatchLen(lenTest, curBack, t); if (lenTest2 >= 2) { int state2 = Base.stateUpdateMatch(state); int posStateNext = position + lenTest & _posStateMask; int curAndLenCharPrice = curAndLenPrice + RangeEncoder.getPrice0(_isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]) + _literalEncoder.getSubCoder(position + lenTest, _matchFinder.getIndexByte(lenTest - 1 - 1)).getPrice(true, _matchFinder.getIndexByte(lenTest - (curBack + 1) - 1), _matchFinder.getIndexByte(lenTest - 1)); state2 = Base.stateUpdateChar(state2); posStateNext = position + lenTest + 1 & _posStateMask; int nextMatchPrice = curAndLenCharPrice + RangeEncoder.getPrice1(_isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]); int nextRepMatchPrice = nextMatchPrice + RangeEncoder.getPrice1(_isRep[state2]); int offset = lenTest + 1 + lenTest2; while (lenEnd < cur + offset) { _optimum[++lenEnd].Price = kIfinityPrice; } curAndLenPrice = nextRepMatchPrice + getRepPrice(0, lenTest2, state2, posStateNext); optimum = _optimum[cur + offset]; if (curAndLenPrice < optimum.Price) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur + lenTest + 1; optimum.BackPrev = 0; optimum.Prev1IsChar = true; optimum.Prev2 = true; optimum.PosPrev2 = cur; optimum.BackPrev2 = curBack + Base.kNumRepDistances; } } } offs += 2; if (offs == numDistancePairs) { break; } } } } } } boolean changePair(int smallDist, int bigDist) { int kDif = 7; return smallDist < 1 << 32 - kDif && bigDist >= smallDist << kDif; } void writeEndMarker(int posState) throws IOException { if (!_writeEndMark) { return; } _rangeEncoder.encode(_isMatch, (_state << Base.kNumPosStatesBitsMax) + posState, 1); _rangeEncoder.encode(_isRep, _state, 0); _state = Base.stateUpdateMatch(_state); int len = Base.kMatchMinLen; _lenEncoder.encode(_rangeEncoder, len - Base.kMatchMinLen, posState); int posSlot = (1 << Base.kNumPosSlotBits) - 1; int lenToPosState = Base.getLenToPosState(len); _posSlotEncoder[lenToPosState].encode(_rangeEncoder, posSlot); int footerBits = 30; int posReduced = (1 << footerBits) - 1; _rangeEncoder.encodeDirectBits(posReduced >> Base.kNumAlignBits, footerBits - Base.kNumAlignBits); _posAlignEncoder.reverseEncode(_rangeEncoder, posReduced & Base.kAlignMask); } void flush(int nowPos) throws IOException { releaseMFBuffer(); writeEndMarker(nowPos & _posStateMask); _rangeEncoder.flushData(); } public void codeOneBlock(long[] inSize, long[] outSize, boolean[] finished) throws IOException { inSize[0] = 0; outSize[0] = 0; finished[0] = true; if (_src != null) { _matchFinder.setBuffer(_src); _matchFinder.init(); _needReleaseMFStream = true; _src = null; } if (_finished) { return; } _finished = true; long progressPosValuePrev = nowPos64; if (nowPos64 == 0) { if (_matchFinder.getNumAvailableBytes() == 0) { flush((int) nowPos64); return; } readMatchDistances(); int posState = (int) nowPos64 & _posStateMask; _rangeEncoder.encode(_isMatch, (_state << Base.kNumPosStatesBitsMax) + posState, 0); _state = Base.stateUpdateChar(_state); byte curByte = _matchFinder.getIndexByte(0 - _additionalOffset); _literalEncoder.getSubCoder((int) nowPos64, _previousByte).encode(_rangeEncoder, curByte); _previousByte = curByte; _additionalOffset--; nowPos64++; } if (_matchFinder.getNumAvailableBytes() == 0) { flush((int) nowPos64); return; } while (true) { int len = getOptimum((int) nowPos64); int pos = backRes; int posState = (int) nowPos64 & _posStateMask; int complexState = (_state << Base.kNumPosStatesBitsMax) + posState; if (len == 1 && pos == -1) { _rangeEncoder.encode(_isMatch, complexState, 0); byte curByte = _matchFinder.getIndexByte(0 - _additionalOffset); LiteralEncoder.Encoder2 subCoder = _literalEncoder.getSubCoder((int) nowPos64, _previousByte); if (!Base.stateIsCharState(_state)) { byte matchByte = _matchFinder.getIndexByte(0 - _repDistances[0] - 1 - _additionalOffset); subCoder.encodeMatched(_rangeEncoder, matchByte, curByte); } else { subCoder.encode(_rangeEncoder, curByte); } _previousByte = curByte; _state = Base.stateUpdateChar(_state); } else { _rangeEncoder.encode(_isMatch, complexState, 1); if (pos < Base.kNumRepDistances) { _rangeEncoder.encode(_isRep, _state, 1); if (pos == 0) { _rangeEncoder.encode(_isRepG0, _state, 0); if (len == 1) { _rangeEncoder.encode(_isRep0Long, complexState, 0); } else { _rangeEncoder.encode(_isRep0Long, complexState, 1); } } else { _rangeEncoder.encode(_isRepG0, _state, 1); if (pos == 1) { _rangeEncoder.encode(_isRepG1, _state, 0); } else { _rangeEncoder.encode(_isRepG1, _state, 1); _rangeEncoder.encode(_isRepG2, _state, pos - 2); } } if (len == 1) { _state = Base.stateUpdateShortRep(_state); } else { _repMatchLenEncoder.encode(_rangeEncoder, len - Base.kMatchMinLen, posState); _state = Base.stateUpdateRep(_state); } int distance = _repDistances[pos]; if (pos != 0) { System.arraycopy(_repDistances, 0, _repDistances, 1, pos); _repDistances[0] = distance; } } else { _rangeEncoder.encode(_isRep, _state, 0); _state = Base.stateUpdateMatch(_state); _lenEncoder.encode(_rangeEncoder, len - Base.kMatchMinLen, posState); pos -= Base.kNumRepDistances; int posSlot = getPosSlot(pos); int lenToPosState = Base.getLenToPosState(len); _posSlotEncoder[lenToPosState].encode(_rangeEncoder, posSlot); if (posSlot >= Base.kStartPosModelIndex) { int footerBits = (posSlot >> 1) - 1; int baseVal = (2 | posSlot & 1) << footerBits; int posReduced = pos - baseVal; if (posSlot < Base.kEndPosModelIndex) { BitTreeEncoder.reverseEncode(_posEncoders, baseVal - posSlot - 1, _rangeEncoder, footerBits, posReduced); } else { _rangeEncoder.encodeDirectBits(posReduced >> Base.kNumAlignBits, footerBits - Base.kNumAlignBits); _posAlignEncoder.reverseEncode(_rangeEncoder, posReduced & Base.kAlignMask); _alignPriceCount++; } } int distance = pos; System.arraycopy(_repDistances, 0, _repDistances, 1, Base.kNumRepDistances - 1); _repDistances[0] = distance; _matchPriceCount++; } _previousByte = _matchFinder.getIndexByte(len - 1 - _additionalOffset); } _additionalOffset -= len; nowPos64 += len; if (_additionalOffset == 0) { // if (!_fastMode) if (_matchPriceCount >= 1 << 7) { fillDistancesPrices(); } if (_alignPriceCount >= Base.kAlignTableSize) { fillAlignPrices(); } inSize[0] = nowPos64; outSize[0] = _rangeEncoder.getProcessedSizeAdd(); if (_matchFinder.getNumAvailableBytes() == 0) { flush((int) nowPos64); return; } if (nowPos64 - progressPosValuePrev >= 1 << 12) { _finished = false; finished[0] = false; return; } } } } void releaseMFBuffer() { if (_matchFinder != null && _needReleaseMFStream) { _matchFinder.releaseBuffer(); _needReleaseMFStream = false; } } void setDstBuffer(Buffer dst, MemoryManager mm) { _rangeEncoder.setBuffer(dst, mm); } Buffer releaseDstBuffer() { return _rangeEncoder.releaseBuffer(); } void releaseBuffers(LZMAEncoder.LZMAOutputState state) { releaseMFBuffer(); state.setDst(releaseDstBuffer()); } void setStreams(Buffer src, Buffer dst, MemoryManager mm, long inSize, long outSize) { _src = src; _finished = false; create(); setDstBuffer(dst, mm); init(); // if (!_fastMode) { fillDistancesPrices(); fillAlignPrices(); } _lenEncoder.setTableSize(_numFastBytes + 1 - Base.kMatchMinLen); _lenEncoder.updateTables(1 << _posStateBits); _repMatchLenEncoder.setTableSize(_numFastBytes + 1 - Base.kMatchMinLen); _repMatchLenEncoder.updateTables(1 << _posStateBits); nowPos64 = 0; } final long[] processedInSize = new long[1]; final long[] processedOutSize = new long[1]; final boolean[] finished = new boolean[1]; public void code(LZMAEncoder.LZMAOutputState state, long inSize, long outSize) throws IOException { _needReleaseMFStream = false; try { setStreams(state.getSrc(), state.getDst(), state.getMemoryManager(), inSize, outSize); while (true) { codeOneBlock(processedInSize, processedOutSize, finished); if (finished[0]) { return; } } } finally { releaseBuffers(state); } } // public static final int kPropSize = 5; // byte[] properties = new byte[kPropSize]; public void writeCoderProperties(Buffer dst) throws IOException { // properties[0] = (byte)((_posStateBits * 5 + _numLiteralPosStateBits) * 9 + _numLiteralContextBits); // for (int i = 0; i < 4; i++) // properties[1 + i] = (byte)(_dictionarySize >> (8 * i)); // outStream.write(properties, 0, kPropSize); dst.put((byte) ((_posStateBits * 5 + _numLiteralPosStateBits) * 9 + _numLiteralContextBits)); for (int i = 0; i < 4; i++) { dst.put((byte) (_dictionarySize >> 8 * i)); } } final int[] tempPrices = new int[Base.kNumFullDistances]; int _matchPriceCount; void fillDistancesPrices() { for (int i = Base.kStartPosModelIndex; i < Base.kNumFullDistances; i++) { int posSlot = getPosSlot(i); int footerBits = (posSlot >> 1) - 1; int baseVal = (2 | posSlot & 1) << footerBits; tempPrices[i] = BitTreeEncoder.reverseGetPrice(_posEncoders, baseVal - posSlot - 1, footerBits, i - baseVal); } for (int lenToPosState = 0; lenToPosState < Base.kNumLenToPosStates; lenToPosState++) { int posSlot; BitTreeEncoder encoder = _posSlotEncoder[lenToPosState]; int st = lenToPosState << Base.kNumPosSlotBits; for (posSlot = 0; posSlot < _distTableSize; posSlot++) { _posSlotPrices[st + posSlot] = encoder.getPrice(posSlot); } for (posSlot = Base.kEndPosModelIndex; posSlot < _distTableSize; posSlot++) { _posSlotPrices[st + posSlot] += (posSlot >> 1) - 1 - Base.kNumAlignBits << RangeEncoder.kNumBitPriceShiftBits; } int st2 = lenToPosState * Base.kNumFullDistances; int i; for (i = 0; i < Base.kStartPosModelIndex; i++) { _distancesPrices[st2 + i] = _posSlotPrices[st + i]; } for (; i < Base.kNumFullDistances; i++) { _distancesPrices[st2 + i] = _posSlotPrices[st + getPosSlot(i)] + tempPrices[i]; } } _matchPriceCount = 0; } void fillAlignPrices() { for (int i = 0; i < Base.kAlignTableSize; i++) { _alignPrices[i] = _posAlignEncoder.reverseGetPrice(i); } _alignPriceCount = 0; } public boolean setAlgorithm(int algorithm) { /* * _fastMode = (algorithm == 0); _maxMode = (algorithm >= 2); */ return true; } public boolean setDictionarySize(int dictionarySize) { int kDicLogSizeMaxCompress = 29; if (dictionarySize < 1 << Base.kDicLogSizeMin || dictionarySize > 1 << kDicLogSizeMaxCompress) { return false; } _dictionarySize = dictionarySize; int dicLogSize; for (dicLogSize = 0; dictionarySize > 1 << dicLogSize; dicLogSize++) { ; } _distTableSize = dicLogSize * 2; return true; } public boolean setNumFastBytes(int numFastBytes) { if (numFastBytes < 5 || numFastBytes > Base.kMatchMaxLen) { return false; } _numFastBytes = numFastBytes; return true; } public boolean setMatchFinder(int matchFinderIndex) { if (matchFinderIndex < 0 || matchFinderIndex > 2) { return false; } int matchFinderIndexPrev = _matchFinderType; _matchFinderType = matchFinderIndex; if (_matchFinder != null && matchFinderIndexPrev != _matchFinderType) { _dictionarySizePrev = -1; _matchFinder = null; } return true; } public boolean setLcLpPb(int lc, int lp, int pb) { if (lp < 0 || lp > Base.kNumLitPosStatesBitsEncodingMax || lc < 0 || lc > Base.kNumLitContextBitsMax || pb < 0 || pb > Base.kNumPosStatesBitsEncodingMax) { return false; } _numLiteralPosStateBits = lp; _numLiteralContextBits = lc; _posStateBits = pb; _posStateMask = (1 << _posStateBits) - 1; return true; } public void setEndMarkerMode(boolean endMarkerMode) { _writeEndMark = endMarkerMode; } }