package org.bouncycastle.pqc.jcajce.spec;

import java.security.InvalidParameterException;
import java.security.spec.AlgorithmParameterSpec;

import org.bouncycastle.pqc.math.linearalgebra.PolynomialRingGF2;

This class provides a specification for the parameters that are used by the McEliece, McElieceCCA2, and Niederreiter key pair generators.
/** * This class provides a specification for the parameters that are used by the * McEliece, McElieceCCA2, and Niederreiter key pair generators. */
public class McElieceKeyGenParameterSpec implements AlgorithmParameterSpec {
The default extension degree
/** * The default extension degree */
public static final int DEFAULT_M = 11;
The default error correcting capability.
/** * The default error correcting capability. */
public static final int DEFAULT_T = 50;
extension degree of the finite field GF(2^m)
/** * extension degree of the finite field GF(2^m) */
private int m;
error correction capability of the code
/** * error correction capability of the code */
private int t;
length of the code
/** * length of the code */
private int n;
the field polynomial
/** * the field polynomial */
private int fieldPoly;
Constructor. Set the default parameters: extension degree.
/** * Constructor. Set the default parameters: extension degree. */
public McElieceKeyGenParameterSpec() { this(DEFAULT_M, DEFAULT_T); }
Constructor.
Params:
  • keysize – the length of a Goppa code
Throws:
/** * Constructor. * * @param keysize the length of a Goppa code * @throws IllegalArgumentException if <tt>keysize &lt; 1</tt>. */
public McElieceKeyGenParameterSpec(int keysize) { if (keysize < 1) { throw new IllegalArgumentException("key size must be positive"); } m = 0; n = 1; while (n < keysize) { n <<= 1; m++; } t = n >>> 1; t /= m; fieldPoly = PolynomialRingGF2.getIrreduciblePolynomial(m); }
Constructor.
Params:
  • m – degree of the finite field GF(2^m)
  • t – error correction capability of the code
Throws:
/** * Constructor. * * @param m degree of the finite field GF(2^m) * @param t error correction capability of the code * @throws InvalidParameterException if <tt>m &lt; 1</tt> or <tt>m &gt; 32</tt> or * <tt>t &lt; 0</tt> or <tt>t &gt; n</tt>. */
public McElieceKeyGenParameterSpec(int m, int t) throws InvalidParameterException { if (m < 1) { throw new IllegalArgumentException("m must be positive"); } if (m > 32) { throw new IllegalArgumentException("m is too large"); } this.m = m; n = 1 << m; if (t < 0) { throw new IllegalArgumentException("t must be positive"); } if (t > n) { throw new IllegalArgumentException("t must be less than n = 2^m"); } this.t = t; fieldPoly = PolynomialRingGF2.getIrreduciblePolynomial(m); }
Constructor.
Params:
  • m – degree of the finite field GF(2^m)
  • t – error correction capability of the code
  • poly – the field polynomial
Throws:
/** * Constructor. * * @param m degree of the finite field GF(2^m) * @param t error correction capability of the code * @param poly the field polynomial * @throws IllegalArgumentException if <tt>m &lt; 1</tt> or <tt>m &gt; 32</tt> or * <tt>t &lt; 0</tt> or <tt>t &gt; n</tt> or * <tt>poly</tt> is not an irreducible field polynomial. */
public McElieceKeyGenParameterSpec(int m, int t, int poly) { this.m = m; if (m < 1) { throw new IllegalArgumentException("m must be positive"); } if (m > 32) { throw new IllegalArgumentException(" m is too large"); } this.n = 1 << m; this.t = t; if (t < 0) { throw new IllegalArgumentException("t must be positive"); } if (t > n) { throw new IllegalArgumentException("t must be less than n = 2^m"); } if ((PolynomialRingGF2.degree(poly) == m) && (PolynomialRingGF2.isIrreducible(poly))) { this.fieldPoly = poly; } else { throw new IllegalArgumentException( "polynomial is not a field polynomial for GF(2^m)"); } }
Returns:the extension degree of the finite field GF(2^m)
/** * @return the extension degree of the finite field GF(2^m) */
public int getM() { return m; }
Returns:the length of the code
/** * @return the length of the code */
public int getN() { return n; }
Returns:the error correction capability of the code
/** * @return the error correction capability of the code */
public int getT() { return t; }
Returns:the field polynomial
/** * @return the field polynomial */
public int getFieldPoly() { return fieldPoly; } }