package org.bouncycastle.crypto.macs;

import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.Mac;
import org.bouncycastle.crypto.modes.CBCBlockCipher;
import org.bouncycastle.crypto.paddings.ISO7816d4Padding;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.util.Pack;

CMAC - as specified at www.nuee.nagoya-u.ac.jp/labs/tiwata/omac/omac.html

CMAC is analogous to OMAC1 - see also en.wikipedia.org/wiki/CMAC

CMAC is a NIST recomendation - see csrc.nist.gov/CryptoToolkit/modes/800-38_Series_Publications/SP800-38B.pdf

CMAC/OMAC1 is a blockcipher-based message authentication code designed and analyzed by Tetsu Iwata and Kaoru Kurosawa.

CMAC/OMAC1 is a simple variant of the CBC MAC (Cipher Block Chaining Message Authentication Code). OMAC stands for One-Key CBC MAC.

It supports 128- or 64-bits block ciphers, with any key size, and returns a MAC with dimension less or equal to the block size of the underlying cipher.

/** * CMAC - as specified at www.nuee.nagoya-u.ac.jp/labs/tiwata/omac/omac.html * <p> * CMAC is analogous to OMAC1 - see also en.wikipedia.org/wiki/CMAC * </p><p> * CMAC is a NIST recomendation - see * csrc.nist.gov/CryptoToolkit/modes/800-38_Series_Publications/SP800-38B.pdf * </p><p> * CMAC/OMAC1 is a blockcipher-based message authentication code designed and * analyzed by Tetsu Iwata and Kaoru Kurosawa. * </p><p> * CMAC/OMAC1 is a simple variant of the CBC MAC (Cipher Block Chaining Message * Authentication Code). OMAC stands for One-Key CBC MAC. * </p><p> * It supports 128- or 64-bits block ciphers, with any key size, and returns * a MAC with dimension less or equal to the block size of the underlying * cipher. * </p> */
public class CMac implements Mac { private byte[] poly; private byte[] ZEROES; private byte[] mac; private byte[] buf; private int bufOff; private BlockCipher cipher; private int macSize; private byte[] Lu, Lu2;
create a standard MAC based on a CBC block cipher (64 or 128 bit block). This will produce an authentication code the length of the block size of the cipher.
Params:
  • cipher – the cipher to be used as the basis of the MAC generation.
/** * create a standard MAC based on a CBC block cipher (64 or 128 bit block). * This will produce an authentication code the length of the block size * of the cipher. * * @param cipher the cipher to be used as the basis of the MAC generation. */
public CMac(BlockCipher cipher) { this(cipher, cipher.getBlockSize() * 8); }
create a standard MAC based on a block cipher with the size of the MAC been given in bits.

Note: the size of the MAC must be at least 24 bits (FIPS Publication 81), or 16 bits if being used as a data authenticator (FIPS Publication 113), and in general should be less than the size of the block cipher as it reduces the chance of an exhaustive attack (see Handbook of Applied Cryptography).

Params:
  • cipher – the cipher to be used as the basis of the MAC generation.
  • macSizeInBits – the size of the MAC in bits, must be a multiple of 8 and <= 128.
/** * create a standard MAC based on a block cipher with the size of the * MAC been given in bits. * <p> * Note: the size of the MAC must be at least 24 bits (FIPS Publication 81), * or 16 bits if being used as a data authenticator (FIPS Publication 113), * and in general should be less than the size of the block cipher as it reduces * the chance of an exhaustive attack (see Handbook of Applied Cryptography). * * @param cipher the cipher to be used as the basis of the MAC generation. * @param macSizeInBits the size of the MAC in bits, must be a multiple of 8 and &lt;= 128. */
public CMac(BlockCipher cipher, int macSizeInBits) { if ((macSizeInBits % 8) != 0) { throw new IllegalArgumentException("MAC size must be multiple of 8"); } if (macSizeInBits > (cipher.getBlockSize() * 8)) { throw new IllegalArgumentException( "MAC size must be less or equal to " + (cipher.getBlockSize() * 8)); } this.cipher = new CBCBlockCipher(cipher); this.macSize = macSizeInBits / 8; this.poly = lookupPoly(cipher.getBlockSize()); mac = new byte[cipher.getBlockSize()]; buf = new byte[cipher.getBlockSize()]; ZEROES = new byte[cipher.getBlockSize()]; bufOff = 0; } public String getAlgorithmName() { return cipher.getAlgorithmName(); } private static int shiftLeft(byte[] block, byte[] output) { int i = block.length; int bit = 0; while (--i >= 0) { int b = block[i] & 0xff; output[i] = (byte)((b << 1) | bit); bit = (b >>> 7) & 1; } return bit; } private byte[] doubleLu(byte[] in) { byte[] ret = new byte[in.length]; int carry = shiftLeft(in, ret); /* * NOTE: This construction is an attempt at a constant-time implementation. */ int mask = (-carry) & 0xff; ret[in.length - 3] ^= poly[1] & mask; ret[in.length - 2] ^= poly[2] & mask; ret[in.length - 1] ^= poly[3] & mask; return ret; } private static byte[] lookupPoly(int blockSizeLength) { int xor; switch (blockSizeLength * 8) { case 64: xor = 0x1B; break; case 128: xor = 0x87; break; case 160: xor = 0x2D; break; case 192: xor = 0x87; break; case 224: xor = 0x309; break; case 256: xor = 0x425; break; case 320: xor = 0x1B; break; case 384: xor = 0x100D; break; case 448: xor = 0x851; break; case 512: xor = 0x125; break; case 768: xor = 0xA0011; break; case 1024: xor = 0x80043; break; case 2048: xor = 0x86001; break; default: throw new IllegalArgumentException("Unknown block size for CMAC: " + (blockSizeLength * 8)); } return Pack.intToBigEndian(xor); } public void init(CipherParameters params) { validate(params); cipher.init(true, params); //initializes the L, Lu, Lu2 numbers byte[] L = new byte[ZEROES.length]; cipher.processBlock(ZEROES, 0, L, 0); Lu = doubleLu(L); Lu2 = doubleLu(Lu); reset(); } void validate(CipherParameters params) { if (params != null) { if (!(params instanceof KeyParameter)) { // CMAC mode does not permit IV to underlying CBC mode throw new IllegalArgumentException("CMac mode only permits key to be set."); } } } public int getMacSize() { return macSize; } public void update(byte in) { if (bufOff == buf.length) { cipher.processBlock(buf, 0, mac, 0); bufOff = 0; } buf[bufOff++] = in; } public void update(byte[] in, int inOff, int len) { if (len < 0) { throw new IllegalArgumentException( "Can't have a negative input length!"); } int blockSize = cipher.getBlockSize(); int gapLen = blockSize - bufOff; if (len > gapLen) { System.arraycopy(in, inOff, buf, bufOff, gapLen); cipher.processBlock(buf, 0, mac, 0); bufOff = 0; len -= gapLen; inOff += gapLen; while (len > blockSize) { cipher.processBlock(in, inOff, mac, 0); len -= blockSize; inOff += blockSize; } } System.arraycopy(in, inOff, buf, bufOff, len); bufOff += len; } public int doFinal(byte[] out, int outOff) { int blockSize = cipher.getBlockSize(); byte[] lu; if (bufOff == blockSize) { lu = Lu; } else { new ISO7816d4Padding().addPadding(buf, bufOff); lu = Lu2; } for (int i = 0; i < mac.length; i++) { buf[i] ^= lu[i]; } cipher.processBlock(buf, 0, mac, 0); System.arraycopy(mac, 0, out, outOff, macSize); reset(); return macSize; }
Reset the mac generator.
/** * Reset the mac generator. */
public void reset() { /* * clean the buffer. */ for (int i = 0; i < buf.length; i++) { buf[i] = 0; } bufOff = 0; /* * reset the underlying cipher. */ cipher.reset(); } }