package org.bouncycastle.crypto.engines;

import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.DataLengthException;
import org.bouncycastle.crypto.OutputLengthException;
import org.bouncycastle.crypto.params.KeyParameter;

a class that provides a basic SKIPJACK engine.
/** * a class that provides a basic SKIPJACK engine. */
public class SkipjackEngine implements BlockCipher { static final int BLOCK_SIZE = 8; static short ftable[] = { 0xa3, 0xd7, 0x09, 0x83, 0xf8, 0x48, 0xf6, 0xf4, 0xb3, 0x21, 0x15, 0x78, 0x99, 0xb1, 0xaf, 0xf9, 0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e, 0x52, 0x95, 0xd9, 0x1e, 0x4e, 0x38, 0x44, 0x28, 0x0a, 0xdf, 0x02, 0xa0, 0x17, 0xf1, 0x60, 0x68, 0x12, 0xb7, 0x7a, 0xc3, 0xe9, 0xfa, 0x3d, 0x53, 0x96, 0x84, 0x6b, 0xba, 0xf2, 0x63, 0x9a, 0x19, 0x7c, 0xae, 0xe5, 0xf5, 0xf7, 0x16, 0x6a, 0xa2, 0x39, 0xb6, 0x7b, 0x0f, 0xc1, 0x93, 0x81, 0x1b, 0xee, 0xb4, 0x1a, 0xea, 0xd0, 0x91, 0x2f, 0xb8, 0x55, 0xb9, 0xda, 0x85, 0x3f, 0x41, 0xbf, 0xe0, 0x5a, 0x58, 0x80, 0x5f, 0x66, 0x0b, 0xd8, 0x90, 0x35, 0xd5, 0xc0, 0xa7, 0x33, 0x06, 0x65, 0x69, 0x45, 0x00, 0x94, 0x56, 0x6d, 0x98, 0x9b, 0x76, 0x97, 0xfc, 0xb2, 0xc2, 0xb0, 0xfe, 0xdb, 0x20, 0xe1, 0xeb, 0xd6, 0xe4, 0xdd, 0x47, 0x4a, 0x1d, 0x42, 0xed, 0x9e, 0x6e, 0x49, 0x3c, 0xcd, 0x43, 0x27, 0xd2, 0x07, 0xd4, 0xde, 0xc7, 0x67, 0x18, 0x89, 0xcb, 0x30, 0x1f, 0x8d, 0xc6, 0x8f, 0xaa, 0xc8, 0x74, 0xdc, 0xc9, 0x5d, 0x5c, 0x31, 0xa4, 0x70, 0x88, 0x61, 0x2c, 0x9f, 0x0d, 0x2b, 0x87, 0x50, 0x82, 0x54, 0x64, 0x26, 0x7d, 0x03, 0x40, 0x34, 0x4b, 0x1c, 0x73, 0xd1, 0xc4, 0xfd, 0x3b, 0xcc, 0xfb, 0x7f, 0xab, 0xe6, 0x3e, 0x5b, 0xa5, 0xad, 0x04, 0x23, 0x9c, 0x14, 0x51, 0x22, 0xf0, 0x29, 0x79, 0x71, 0x7e, 0xff, 0x8c, 0x0e, 0xe2, 0x0c, 0xef, 0xbc, 0x72, 0x75, 0x6f, 0x37, 0xa1, 0xec, 0xd3, 0x8e, 0x62, 0x8b, 0x86, 0x10, 0xe8, 0x08, 0x77, 0x11, 0xbe, 0x92, 0x4f, 0x24, 0xc5, 0x32, 0x36, 0x9d, 0xcf, 0xf3, 0xa6, 0xbb, 0xac, 0x5e, 0x6c, 0xa9, 0x13, 0x57, 0x25, 0xb5, 0xe3, 0xbd, 0xa8, 0x3a, 0x01, 0x05, 0x59, 0x2a, 0x46 }; private int[] key0, key1, key2, key3; private boolean encrypting;
initialise a SKIPJACK cipher.
Params:
  • encrypting – whether or not we are for encryption.
  • params – the parameters required to set up the cipher.
Throws:
/** * initialise a SKIPJACK cipher. * * @param encrypting whether or not we are for encryption. * @param params the parameters required to set up the cipher. * @exception IllegalArgumentException if the params argument is * inappropriate. */
public void init( boolean encrypting, CipherParameters params) { if (!(params instanceof KeyParameter)) { throw new IllegalArgumentException("invalid parameter passed to SKIPJACK init - " + params.getClass().getName()); } byte[] keyBytes = ((KeyParameter)params).getKey(); this.encrypting = encrypting; this.key0 = new int[32]; this.key1 = new int[32]; this.key2 = new int[32]; this.key3 = new int[32]; // // expand the key to 128 bytes in 4 parts (saving us a modulo, multiply // and an addition). // for (int i = 0; i < 32; i ++) { key0[i] = keyBytes[(i * 4) % 10] & 0xff; key1[i] = keyBytes[(i * 4 + 1) % 10] & 0xff; key2[i] = keyBytes[(i * 4 + 2) % 10] & 0xff; key3[i] = keyBytes[(i * 4 + 3) % 10] & 0xff; } } public String getAlgorithmName() { return "SKIPJACK"; } public int getBlockSize() { return BLOCK_SIZE; } public int processBlock( byte[] in, int inOff, byte[] out, int outOff) { if (key1 == null) { throw new IllegalStateException("SKIPJACK engine not initialised"); } if ((inOff + BLOCK_SIZE) > in.length) { throw new DataLengthException("input buffer too short"); } if ((outOff + BLOCK_SIZE) > out.length) { throw new OutputLengthException("output buffer too short"); } if (encrypting) { encryptBlock(in, inOff, out, outOff); } else { decryptBlock(in, inOff, out, outOff); } return BLOCK_SIZE; } public void reset() { }
The G permutation
/** * The G permutation */
private int g( int k, int w) { int g1, g2, g3, g4, g5, g6; g1 = (w >> 8) & 0xff; g2 = w & 0xff; g3 = ftable[g2 ^ key0[k]] ^ g1; g4 = ftable[g3 ^ key1[k]] ^ g2; g5 = ftable[g4 ^ key2[k]] ^ g3; g6 = ftable[g5 ^ key3[k]] ^ g4; return ((g5 << 8) + g6); } public int encryptBlock( byte[] in, int inOff, byte[] out, int outOff) { int w1 = (in[inOff + 0] << 8) + (in[inOff + 1] & 0xff); int w2 = (in[inOff + 2] << 8) + (in[inOff + 3] & 0xff); int w3 = (in[inOff + 4] << 8) + (in[inOff + 5] & 0xff); int w4 = (in[inOff + 6] << 8) + (in[inOff + 7] & 0xff); int k = 0; for (int t = 0; t < 2; t++) { for(int i = 0; i < 8; i++) { int tmp = w4; w4 = w3; w3 = w2; w2 = g(k, w1); w1 = w2 ^ tmp ^ (k + 1); k++; } for(int i = 0; i < 8; i++) { int tmp = w4; w4 = w3; w3 = w1 ^ w2 ^ (k + 1); w2 = g(k, w1); w1 = tmp; k++; } } out[outOff + 0] = (byte)((w1 >> 8)); out[outOff + 1] = (byte)(w1); out[outOff + 2] = (byte)((w2 >> 8)); out[outOff + 3] = (byte)(w2); out[outOff + 4] = (byte)((w3 >> 8)); out[outOff + 5] = (byte)(w3); out[outOff + 6] = (byte)((w4 >> 8)); out[outOff + 7] = (byte)(w4); return BLOCK_SIZE; }
the inverse of the G permutation.
/** * the inverse of the G permutation. */
private int h( int k, int w) { int h1, h2, h3, h4, h5, h6; h1 = w & 0xff; h2 = (w >> 8) & 0xff; h3 = ftable[h2 ^ key3[k]] ^ h1; h4 = ftable[h3 ^ key2[k]] ^ h2; h5 = ftable[h4 ^ key1[k]] ^ h3; h6 = ftable[h5 ^ key0[k]] ^ h4; return ((h6 << 8) + h5); } public int decryptBlock( byte[] in, int inOff, byte[] out, int outOff) { int w2 = (in[inOff + 0] << 8) + (in[inOff + 1] & 0xff); int w1 = (in[inOff + 2] << 8) + (in[inOff + 3] & 0xff); int w4 = (in[inOff + 4] << 8) + (in[inOff + 5] & 0xff); int w3 = (in[inOff + 6] << 8) + (in[inOff + 7] & 0xff); int k = 31; for (int t = 0; t < 2; t++) { for(int i = 0; i < 8; i++) { int tmp = w4; w4 = w3; w3 = w2; w2 = h(k, w1); w1 = w2 ^ tmp ^ (k + 1); k--; } for(int i = 0; i < 8; i++) { int tmp = w4; w4 = w3; w3 = w1 ^ w2 ^ (k + 1); w2 = h(k, w1); w1 = tmp; k--; } } out[outOff + 0] = (byte)((w2 >> 8)); out[outOff + 1] = (byte)(w2); out[outOff + 2] = (byte)((w1 >> 8)); out[outOff + 3] = (byte)(w1); out[outOff + 4] = (byte)((w4 >> 8)); out[outOff + 5] = (byte)(w4); out[outOff + 6] = (byte)((w3 >> 8)); out[outOff + 7] = (byte)(w3); return BLOCK_SIZE; } }