package org.bouncycastle.crypto.digests;

import org.bouncycastle.crypto.ExtendedDigest;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.Memoable;


Implementation of WhirlpoolDigest, based on Java source published by Barreto and Rijmen.
/** * Implementation of WhirlpoolDigest, based on Java source published by Barreto * and Rijmen. * */
public final class WhirlpoolDigest implements ExtendedDigest, Memoable { private static final int BYTE_LENGTH = 64; private static final int DIGEST_LENGTH_BYTES = 512 / 8; private static final int ROUNDS = 10; private static final int REDUCTION_POLYNOMIAL = 0x011d; // 2^8 + 2^4 + 2^3 + 2 + 1; private static final int[] SBOX = { 0x18, 0x23, 0xc6, 0xe8, 0x87, 0xb8, 0x01, 0x4f, 0x36, 0xa6, 0xd2, 0xf5, 0x79, 0x6f, 0x91, 0x52, 0x60, 0xbc, 0x9b, 0x8e, 0xa3, 0x0c, 0x7b, 0x35, 0x1d, 0xe0, 0xd7, 0xc2, 0x2e, 0x4b, 0xfe, 0x57, 0x15, 0x77, 0x37, 0xe5, 0x9f, 0xf0, 0x4a, 0xda, 0x58, 0xc9, 0x29, 0x0a, 0xb1, 0xa0, 0x6b, 0x85, 0xbd, 0x5d, 0x10, 0xf4, 0xcb, 0x3e, 0x05, 0x67, 0xe4, 0x27, 0x41, 0x8b, 0xa7, 0x7d, 0x95, 0xd8, 0xfb, 0xee, 0x7c, 0x66, 0xdd, 0x17, 0x47, 0x9e, 0xca, 0x2d, 0xbf, 0x07, 0xad, 0x5a, 0x83, 0x33, 0x63, 0x02, 0xaa, 0x71, 0xc8, 0x19, 0x49, 0xd9, 0xf2, 0xe3, 0x5b, 0x88, 0x9a, 0x26, 0x32, 0xb0, 0xe9, 0x0f, 0xd5, 0x80, 0xbe, 0xcd, 0x34, 0x48, 0xff, 0x7a, 0x90, 0x5f, 0x20, 0x68, 0x1a, 0xae, 0xb4, 0x54, 0x93, 0x22, 0x64, 0xf1, 0x73, 0x12, 0x40, 0x08, 0xc3, 0xec, 0xdb, 0xa1, 0x8d, 0x3d, 0x97, 0x00, 0xcf, 0x2b, 0x76, 0x82, 0xd6, 0x1b, 0xb5, 0xaf, 0x6a, 0x50, 0x45, 0xf3, 0x30, 0xef, 0x3f, 0x55, 0xa2, 0xea, 0x65, 0xba, 0x2f, 0xc0, 0xde, 0x1c, 0xfd, 0x4d, 0x92, 0x75, 0x06, 0x8a, 0xb2, 0xe6, 0x0e, 0x1f, 0x62, 0xd4, 0xa8, 0x96, 0xf9, 0xc5, 0x25, 0x59, 0x84, 0x72, 0x39, 0x4c, 0x5e, 0x78, 0x38, 0x8c, 0xd1, 0xa5, 0xe2, 0x61, 0xb3, 0x21, 0x9c, 0x1e, 0x43, 0xc7, 0xfc, 0x04, 0x51, 0x99, 0x6d, 0x0d, 0xfa, 0xdf, 0x7e, 0x24, 0x3b, 0xab, 0xce, 0x11, 0x8f, 0x4e, 0xb7, 0xeb, 0x3c, 0x81, 0x94, 0xf7, 0xb9, 0x13, 0x2c, 0xd3, 0xe7, 0x6e, 0xc4, 0x03, 0x56, 0x44, 0x7f, 0xa9, 0x2a, 0xbb, 0xc1, 0x53, 0xdc, 0x0b, 0x9d, 0x6c, 0x31, 0x74, 0xf6, 0x46, 0xac, 0x89, 0x14, 0xe1, 0x16, 0x3a, 0x69, 0x09, 0x70, 0xb6, 0xd0, 0xed, 0xcc, 0x42, 0x98, 0xa4, 0x28, 0x5c, 0xf8, 0x86 }; private static final long[] C0 = new long[256]; private static final long[] C1 = new long[256]; private static final long[] C2 = new long[256]; private static final long[] C3 = new long[256]; private static final long[] C4 = new long[256]; private static final long[] C5 = new long[256]; private static final long[] C6 = new long[256]; private static final long[] C7 = new long[256]; private final long[] _rc = new long[ROUNDS + 1]; public WhirlpoolDigest() { for (int i = 0; i < 256; i++) { int v1 = SBOX[i]; int v2 = maskWithReductionPolynomial(v1 << 1); int v4 = maskWithReductionPolynomial(v2 << 1); int v5 = v4 ^ v1; int v8 = maskWithReductionPolynomial(v4 << 1); int v9 = v8 ^ v1; C0[i] = packIntoLong(v1, v1, v4, v1, v8, v5, v2, v9); C1[i] = packIntoLong(v9, v1, v1, v4, v1, v8, v5, v2); C2[i] = packIntoLong(v2, v9, v1, v1, v4, v1, v8, v5); C3[i] = packIntoLong(v5, v2, v9, v1, v1, v4, v1, v8); C4[i] = packIntoLong(v8, v5, v2, v9, v1, v1, v4, v1); C5[i] = packIntoLong(v1, v8, v5, v2, v9, v1, v1, v4); C6[i] = packIntoLong(v4, v1, v8, v5, v2, v9, v1, v1); C7[i] = packIntoLong(v1, v4, v1, v8, v5, v2, v9, v1); } _rc[0] = 0L; for (int r = 1; r <= ROUNDS; r++) { int i = 8 * (r - 1); _rc[r] = (C0[i ] & 0xff00000000000000L) ^ (C1[i + 1] & 0x00ff000000000000L) ^ (C2[i + 2] & 0x0000ff0000000000L) ^ (C3[i + 3] & 0x000000ff00000000L) ^ (C4[i + 4] & 0x00000000ff000000L) ^ (C5[i + 5] & 0x0000000000ff0000L) ^ (C6[i + 6] & 0x000000000000ff00L) ^ (C7[i + 7] & 0x00000000000000ffL); } } private long packIntoLong(int b7, int b6, int b5, int b4, int b3, int b2, int b1, int b0) { return ((long)b7 << 56) ^ ((long)b6 << 48) ^ ((long)b5 << 40) ^ ((long)b4 << 32) ^ ((long)b3 << 24) ^ ((long)b2 << 16) ^ ((long)b1 << 8) ^ b0; } /* * int's are used to prevent sign extension. The values that are really being used are * actually just 0..255 */ private int maskWithReductionPolynomial(int input) { int rv = input; if (rv >= 0x100L) // high bit set { rv ^= REDUCTION_POLYNOMIAL; // reduced by the polynomial } return rv; } // --------------------------------------------------------------------------------------// // -- buffer information -- private static final int BITCOUNT_ARRAY_SIZE = 32; private byte[] _buffer = new byte[64]; private int _bufferPos = 0; private short[] _bitCount = new short[BITCOUNT_ARRAY_SIZE]; // -- internal hash state -- private long[] _hash = new long[8]; private long[] _K = new long[8]; // the round key private long[] _L = new long[8]; private long[] _block = new long[8]; // mu (buffer) private long[] _state = new long[8]; // the current "cipher" state
Copy constructor. This will copy the state of the provided message digest.
/** * Copy constructor. This will copy the state of the provided message * digest. */
public WhirlpoolDigest(WhirlpoolDigest originalDigest) { reset(originalDigest); } public String getAlgorithmName() { return "Whirlpool"; } public int getDigestSize() { return DIGEST_LENGTH_BYTES; } public int doFinal(byte[] out, int outOff) { // sets out[outOff] .. out[outOff+DIGEST_LENGTH_BYTES] finish(); for (int i = 0; i < 8; i++) { convertLongToByteArray(_hash[i], out, outOff + (i * 8)); } reset(); return getDigestSize(); }
reset the chaining variables
/** * reset the chaining variables */
public void reset() { // set variables to null, blank, whatever _bufferPos = 0; Arrays.fill(_bitCount, (short)0); Arrays.fill(_buffer, (byte)0); Arrays.fill(_hash, 0); Arrays.fill(_K, 0); Arrays.fill(_L, 0); Arrays.fill(_block, 0); Arrays.fill(_state, 0); } // this takes a buffer of information and fills the block private void processFilledBuffer(byte[] in, int inOff) { // copies into the block... for (int i = 0; i < _state.length; i++) { _block[i] = bytesToLongFromBuffer(_buffer, i * 8); } processBlock(); _bufferPos = 0; Arrays.fill(_buffer, (byte)0); } private long bytesToLongFromBuffer(byte[] buffer, int startPos) { long rv = (((buffer[startPos + 0] & 0xffL) << 56) | ((buffer[startPos + 1] & 0xffL) << 48) | ((buffer[startPos + 2] & 0xffL) << 40) | ((buffer[startPos + 3] & 0xffL) << 32) | ((buffer[startPos + 4] & 0xffL) << 24) | ((buffer[startPos + 5] & 0xffL) << 16) | ((buffer[startPos + 6] & 0xffL) << 8) | ((buffer[startPos + 7]) & 0xffL)); return rv; } private void convertLongToByteArray(long inputLong, byte[] outputArray, int offSet) { for (int i = 0; i < 8; i++) { outputArray[offSet + i] = (byte)((inputLong >> (56 - (i * 8))) & 0xff); } } protected void processBlock() { // buffer contents have been transferred to the _block[] array via // processFilledBuffer // compute and apply K^0 for (int i = 0; i < 8; i++) { _state[i] = _block[i] ^ (_K[i] = _hash[i]); } // iterate over the rounds for (int round = 1; round <= ROUNDS; round++) { for (int i = 0; i < 8; i++) { _L[i] = 0; _L[i] ^= C0[(int)(_K[(i - 0) & 7] >>> 56) & 0xff]; _L[i] ^= C1[(int)(_K[(i - 1) & 7] >>> 48) & 0xff]; _L[i] ^= C2[(int)(_K[(i - 2) & 7] >>> 40) & 0xff]; _L[i] ^= C3[(int)(_K[(i - 3) & 7] >>> 32) & 0xff]; _L[i] ^= C4[(int)(_K[(i - 4) & 7] >>> 24) & 0xff]; _L[i] ^= C5[(int)(_K[(i - 5) & 7] >>> 16) & 0xff]; _L[i] ^= C6[(int)(_K[(i - 6) & 7] >>> 8) & 0xff]; _L[i] ^= C7[(int)(_K[(i - 7) & 7]) & 0xff]; } System.arraycopy(_L, 0, _K, 0, _K.length); _K[0] ^= _rc[round]; // apply the round transformation for (int i = 0; i < 8; i++) { _L[i] = _K[i]; _L[i] ^= C0[(int)(_state[(i - 0) & 7] >>> 56) & 0xff]; _L[i] ^= C1[(int)(_state[(i - 1) & 7] >>> 48) & 0xff]; _L[i] ^= C2[(int)(_state[(i - 2) & 7] >>> 40) & 0xff]; _L[i] ^= C3[(int)(_state[(i - 3) & 7] >>> 32) & 0xff]; _L[i] ^= C4[(int)(_state[(i - 4) & 7] >>> 24) & 0xff]; _L[i] ^= C5[(int)(_state[(i - 5) & 7] >>> 16) & 0xff]; _L[i] ^= C6[(int)(_state[(i - 6) & 7] >>> 8) & 0xff]; _L[i] ^= C7[(int)(_state[(i - 7) & 7]) & 0xff]; } // save the current state System.arraycopy(_L, 0, _state, 0, _state.length); } // apply Miuaguchi-Preneel compression for (int i = 0; i < 8; i++) { _hash[i] ^= _state[i] ^ _block[i]; } } public void update(byte in) { _buffer[_bufferPos] = in; //System.out.println("adding to buffer = "+_buffer[_bufferPos]); ++_bufferPos; if (_bufferPos == _buffer.length) { processFilledBuffer(_buffer, 0); } increment(); } /* * increment() can be implemented in this way using 2 arrays or * by having some temporary variables that are used to set the * value provided by EIGHT[i] and carry within the loop. * * not having done any timing, this seems likely to be faster * at the slight expense of 32*(sizeof short) bytes */ private static final short[] EIGHT = new short[BITCOUNT_ARRAY_SIZE]; static { EIGHT[BITCOUNT_ARRAY_SIZE - 1] = 8; } private void increment() { int carry = 0; for (int i = _bitCount.length - 1; i >= 0; i--) { int sum = (_bitCount[i] & 0xff) + EIGHT[i] + carry; carry = sum >>> 8; _bitCount[i] = (short)(sum & 0xff); } } public void update(byte[] in, int inOff, int len) { while (len > 0) { update(in[inOff]); ++inOff; --len; } } private void finish() { /* * this makes a copy of the current bit length. at the expense of an * object creation of 32 bytes rather than providing a _stopCounting * boolean which was the alternative I could think of. */ byte[] bitLength = copyBitLength(); _buffer[_bufferPos++] |= 0x80; if (_bufferPos == _buffer.length) { processFilledBuffer(_buffer, 0); } /* * Final block contains * [ ... data .... ][0][0][0][ length ] * * if [ length ] cannot fit. Need to create a new block. */ if (_bufferPos > 32) { while (_bufferPos != 0) { update((byte)0); } } while (_bufferPos <= 32) { update((byte)0); } // copy the length information to the final 32 bytes of the // 64 byte block.... System.arraycopy(bitLength, 0, _buffer, 32, bitLength.length); processFilledBuffer(_buffer, 0); } private byte[] copyBitLength() { byte[] rv = new byte[BITCOUNT_ARRAY_SIZE]; for (int i = 0; i < rv.length; i++) { rv[i] = (byte)(_bitCount[i] & 0xff); } return rv; } public int getByteLength() { return BYTE_LENGTH; } public Memoable copy() { return new WhirlpoolDigest(this); } public void reset(Memoable other) { WhirlpoolDigest originalDigest = (WhirlpoolDigest)other; System.arraycopy(originalDigest._rc, 0, _rc, 0, _rc.length); System.arraycopy(originalDigest._buffer, 0, _buffer, 0, _buffer.length); this._bufferPos = originalDigest._bufferPos; System.arraycopy(originalDigest._bitCount, 0, _bitCount, 0, _bitCount.length); // -- internal hash state -- System.arraycopy(originalDigest._hash, 0, _hash, 0, _hash.length); System.arraycopy(originalDigest._K, 0, _K, 0, _K.length); System.arraycopy(originalDigest._L, 0, _L, 0, _L.length); System.arraycopy(originalDigest._block, 0, _block, 0, _block.length); System.arraycopy(originalDigest._state, 0, _state, 0, _state.length); } }