package org.bouncycastle.crypto.digests;

import org.bouncycastle.util.Memoable;
import org.bouncycastle.util.Pack;

implementation of SHA-1 as outlined in "Handbook of Applied Cryptography", pages 346 - 349. It is interesting to ponder why the, apart from the extra IV, the other difference here from MD5 is the "endianness" of the word processing!
/** * implementation of SHA-1 as outlined in "Handbook of Applied Cryptography", pages 346 - 349. * * It is interesting to ponder why the, apart from the extra IV, the other difference here from MD5 * is the "endianness" of the word processing! */
public class SHA1Digest extends GeneralDigest implements EncodableDigest { private static final int DIGEST_LENGTH = 20; private int H1, H2, H3, H4, H5; private int[] X = new int[80]; private int xOff;
Standard constructor
/** * Standard constructor */
public SHA1Digest() { reset(); }
Copy constructor. This will copy the state of the provided message digest.
/** * Copy constructor. This will copy the state of the provided * message digest. */
public SHA1Digest(SHA1Digest t) { super(t); copyIn(t); }
State constructor - create a digest initialised with the state of a previous one.
Params:
  • encodedState – the encoded state from the originating digest.
/** * State constructor - create a digest initialised with the state of a previous one. * * @param encodedState the encoded state from the originating digest. */
public SHA1Digest(byte[] encodedState) { super(encodedState); H1 = Pack.bigEndianToInt(encodedState, 16); H2 = Pack.bigEndianToInt(encodedState, 20); H3 = Pack.bigEndianToInt(encodedState, 24); H4 = Pack.bigEndianToInt(encodedState, 28); H5 = Pack.bigEndianToInt(encodedState, 32); xOff = Pack.bigEndianToInt(encodedState, 36); for (int i = 0; i != xOff; i++) { X[i] = Pack.bigEndianToInt(encodedState, 40 + (i * 4)); } } private void copyIn(SHA1Digest t) { H1 = t.H1; H2 = t.H2; H3 = t.H3; H4 = t.H4; H5 = t.H5; System.arraycopy(t.X, 0, X, 0, t.X.length); xOff = t.xOff; } public String getAlgorithmName() { return "SHA-1"; } public int getDigestSize() { return DIGEST_LENGTH; } protected void processWord( byte[] in, int inOff) { // Note: Inlined for performance // X[xOff] = Pack.bigEndianToInt(in, inOff); int n = in[ inOff] << 24; n |= (in[++inOff] & 0xff) << 16; n |= (in[++inOff] & 0xff) << 8; n |= (in[++inOff] & 0xff); X[xOff] = n; if (++xOff == 16) { processBlock(); } } protected void processLength( long bitLength) { if (xOff > 14) { processBlock(); } X[14] = (int)(bitLength >>> 32); X[15] = (int)bitLength; } public int doFinal( byte[] out, int outOff) { finish(); Pack.intToBigEndian(H1, out, outOff); Pack.intToBigEndian(H2, out, outOff + 4); Pack.intToBigEndian(H3, out, outOff + 8); Pack.intToBigEndian(H4, out, outOff + 12); Pack.intToBigEndian(H5, out, outOff + 16); reset(); return DIGEST_LENGTH; }
reset the chaining variables
/** * reset the chaining variables */
public void reset() { super.reset(); H1 = 0x67452301; H2 = 0xefcdab89; H3 = 0x98badcfe; H4 = 0x10325476; H5 = 0xc3d2e1f0; xOff = 0; for (int i = 0; i != X.length; i++) { X[i] = 0; } } // // Additive constants // private static final int Y1 = 0x5a827999; private static final int Y2 = 0x6ed9eba1; private static final int Y3 = 0x8f1bbcdc; private static final int Y4 = 0xca62c1d6; private int f( int u, int v, int w) { return ((u & v) | ((~u) & w)); } private int h( int u, int v, int w) { return (u ^ v ^ w); } private int g( int u, int v, int w) { return ((u & v) | (u & w) | (v & w)); } protected void processBlock() { // // expand 16 word block into 80 word block. // for (int i = 16; i < 80; i++) { int t = X[i - 3] ^ X[i - 8] ^ X[i - 14] ^ X[i - 16]; X[i] = t << 1 | t >>> 31; } // // set up working variables. // int A = H1; int B = H2; int C = H3; int D = H4; int E = H5; // // round 1 // int idx = 0; for (int j = 0; j < 4; j++) { // E = rotateLeft(A, 5) + f(B, C, D) + E + X[idx++] + Y1 // B = rotateLeft(B, 30) E += (A << 5 | A >>> 27) + f(B, C, D) + X[idx++] + Y1; B = B << 30 | B >>> 2; D += (E << 5 | E >>> 27) + f(A, B, C) + X[idx++] + Y1; A = A << 30 | A >>> 2; C += (D << 5 | D >>> 27) + f(E, A, B) + X[idx++] + Y1; E = E << 30 | E >>> 2; B += (C << 5 | C >>> 27) + f(D, E, A) + X[idx++] + Y1; D = D << 30 | D >>> 2; A += (B << 5 | B >>> 27) + f(C, D, E) + X[idx++] + Y1; C = C << 30 | C >>> 2; } // // round 2 // for (int j = 0; j < 4; j++) { // E = rotateLeft(A, 5) + h(B, C, D) + E + X[idx++] + Y2 // B = rotateLeft(B, 30) E += (A << 5 | A >>> 27) + h(B, C, D) + X[idx++] + Y2; B = B << 30 | B >>> 2; D += (E << 5 | E >>> 27) + h(A, B, C) + X[idx++] + Y2; A = A << 30 | A >>> 2; C += (D << 5 | D >>> 27) + h(E, A, B) + X[idx++] + Y2; E = E << 30 | E >>> 2; B += (C << 5 | C >>> 27) + h(D, E, A) + X[idx++] + Y2; D = D << 30 | D >>> 2; A += (B << 5 | B >>> 27) + h(C, D, E) + X[idx++] + Y2; C = C << 30 | C >>> 2; } // // round 3 // for (int j = 0; j < 4; j++) { // E = rotateLeft(A, 5) + g(B, C, D) + E + X[idx++] + Y3 // B = rotateLeft(B, 30) E += (A << 5 | A >>> 27) + g(B, C, D) + X[idx++] + Y3; B = B << 30 | B >>> 2; D += (E << 5 | E >>> 27) + g(A, B, C) + X[idx++] + Y3; A = A << 30 | A >>> 2; C += (D << 5 | D >>> 27) + g(E, A, B) + X[idx++] + Y3; E = E << 30 | E >>> 2; B += (C << 5 | C >>> 27) + g(D, E, A) + X[idx++] + Y3; D = D << 30 | D >>> 2; A += (B << 5 | B >>> 27) + g(C, D, E) + X[idx++] + Y3; C = C << 30 | C >>> 2; } // // round 4 // for (int j = 0; j <= 3; j++) { // E = rotateLeft(A, 5) + h(B, C, D) + E + X[idx++] + Y4 // B = rotateLeft(B, 30) E += (A << 5 | A >>> 27) + h(B, C, D) + X[idx++] + Y4; B = B << 30 | B >>> 2; D += (E << 5 | E >>> 27) + h(A, B, C) + X[idx++] + Y4; A = A << 30 | A >>> 2; C += (D << 5 | D >>> 27) + h(E, A, B) + X[idx++] + Y4; E = E << 30 | E >>> 2; B += (C << 5 | C >>> 27) + h(D, E, A) + X[idx++] + Y4; D = D << 30 | D >>> 2; A += (B << 5 | B >>> 27) + h(C, D, E) + X[idx++] + Y4; C = C << 30 | C >>> 2; } H1 += A; H2 += B; H3 += C; H4 += D; H5 += E; // // reset start of the buffer. // xOff = 0; for (int i = 0; i < 16; i++) { X[i] = 0; } } public Memoable copy() { return new SHA1Digest(this); } public void reset(Memoable other) { SHA1Digest d = (SHA1Digest)other; super.copyIn(d); copyIn(d); } public byte[] getEncodedState() { byte[] state = new byte[40 + xOff * 4]; super.populateState(state); Pack.intToBigEndian(H1, state, 16); Pack.intToBigEndian(H2, state, 20); Pack.intToBigEndian(H3, state, 24); Pack.intToBigEndian(H4, state, 28); Pack.intToBigEndian(H5, state, 32); Pack.intToBigEndian(xOff, state, 36); for (int i = 0; i != xOff; i++) { Pack.intToBigEndian(X[i], state, 40 + (i * 4)); } return state; } }