/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.tomcat.util.codec.binary;

import org.apache.tomcat.util.buf.HexUtils;
import org.apache.tomcat.util.res.StringManager;

Abstract superclass for Base-N encoders and decoders.

This class is thread-safe.

/** * Abstract superclass for Base-N encoders and decoders. * * <p> * This class is thread-safe. * </p> */
public abstract class BaseNCodec { protected static final StringManager sm = StringManager.getManager(BaseNCodec.class);
Holds thread context so classes can be thread-safe. This class is not itself thread-safe; each thread must allocate its own copy.
Since:1.7
/** * Holds thread context so classes can be thread-safe. * * This class is not itself thread-safe; each thread must allocate its own copy. * * @since 1.7 */
static class Context {
Place holder for the bytes we're dealing with for our based logic. Bitwise operations store and extract the encoding or decoding from this variable.
/** * Place holder for the bytes we're dealing with for our based logic. * Bitwise operations store and extract the encoding or decoding from this variable. */
int ibitWorkArea;
Buffer for streaming.
/** * Buffer for streaming. */
byte[] buffer;
Position where next character should be written in the buffer.
/** * Position where next character should be written in the buffer. */
int pos;
Position where next character should be read from the buffer.
/** * Position where next character should be read from the buffer. */
int readPos;
Boolean flag to indicate the EOF has been reached. Once EOF has been reached, this object becomes useless, and must be thrown away.
/** * Boolean flag to indicate the EOF has been reached. Once EOF has been reached, this object becomes useless, * and must be thrown away. */
boolean eof;
Variable tracks how many characters have been written to the current line. Only used when encoding. We use it to make sure each encoded line never goes beyond lineLength (if lineLength > 0).
/** * Variable tracks how many characters have been written to the current line. Only used when encoding. We use * it to make sure each encoded line never goes beyond lineLength (if lineLength &gt; 0). */
int currentLinePos;
Writes to the buffer only occur after every 3/5 reads when encoding, and every 4/8 reads when decoding. This variable helps track that.
/** * Writes to the buffer only occur after every 3/5 reads when encoding, and every 4/8 reads when decoding. This * variable helps track that. */
int modulus; Context() { }
Returns a String useful for debugging (especially within a debugger.)
Returns:a String useful for debugging.
/** * Returns a String useful for debugging (especially within a debugger.) * * @return a String useful for debugging. */
@SuppressWarnings("boxing") // OK to ignore boxing here @Override public String toString() { return String.format("%s[buffer=%s, currentLinePos=%s, eof=%s, ibitWorkArea=%s, " + "modulus=%s, pos=%s, readPos=%s]", this.getClass().getSimpleName(), HexUtils.toHexString(buffer), currentLinePos, eof, ibitWorkArea, modulus, pos, readPos); } }
EOF
Since:1.7
/** * EOF * * @since 1.7 */
static final int EOF = -1;
MIME chunk size per RFC 2045 section 6.8.

The 76 character limit does not count the trailing CRLF, but counts all other characters, including any equal signs.

See Also:
/** * MIME chunk size per RFC 2045 section 6.8. * * <p> * The {@value} character limit does not count the trailing CRLF, but counts all other characters, including any * equal signs. * </p> * * @see <a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045 section 6.8</a> */
public static final int MIME_CHUNK_SIZE = 76;
PEM chunk size per RFC 1421 section 4.3.2.4.

The 64 character limit does not count the trailing CRLF, but counts all other characters, including any equal signs.

See Also:
/** * PEM chunk size per RFC 1421 section 4.3.2.4. * * <p> * The {@value} character limit does not count the trailing CRLF, but counts all other characters, including any * equal signs. * </p> * * @see <a href="http://tools.ietf.org/html/rfc1421">RFC 1421 section 4.3.2.4</a> */
public static final int PEM_CHUNK_SIZE = 64; private static final int DEFAULT_BUFFER_RESIZE_FACTOR = 2;
Defines the default buffer size - currently 128 - must be large enough for at least one encoded block+separator
/** * Defines the default buffer size - currently {@value} * - must be large enough for at least one encoded block+separator */
private static final int DEFAULT_BUFFER_SIZE = 128;
The maximum size buffer to allocate.

This is set to the same size used in the JDK java.util.ArrayList:

Some VMs reserve some header words in an array. Attempts to allocate larger arrays may result in OutOfMemoryError: Requested array size exceeds VM limit.
/** * The maximum size buffer to allocate. * * <p>This is set to the same size used in the JDK {@code java.util.ArrayList}:</p> * <blockquote> * Some VMs reserve some header words in an array. * Attempts to allocate larger arrays may result in * OutOfMemoryError: Requested array size exceeds VM limit. * </blockquote> */
private static final int MAX_BUFFER_SIZE = Integer.MAX_VALUE - 8;
Mask used to extract 8 bits, used in decoding bytes
/** Mask used to extract 8 bits, used in decoding bytes */
protected static final int MASK_8BITS = 0xff;
Byte used to pad output.
/** * Byte used to pad output. */
protected static final byte PAD_DEFAULT = '='; // Allow static access to default
Chunk separator per RFC 2045 section 2.1.
See Also:
/** * Chunk separator per RFC 2045 section 2.1. * * @see <a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045 section 2.1</a> */
static final byte[] CHUNK_SEPARATOR = {'\r', '\n'};
Compares two int values numerically treating the values as unsigned. Taken from JDK 1.8.

TODO: Replace with JDK 1.8 Integer::compareUnsigned(int, int).

Params:
  • x – the first int to compare
  • y – the second int to compare
Returns:the value 0 if x == y; a value less than 0 if x < y as unsigned values; and a value greater than 0 if x > y as unsigned values
/** * Compares two {@code int} values numerically treating the values * as unsigned. Taken from JDK 1.8. * * <p>TODO: Replace with JDK 1.8 Integer::compareUnsigned(int, int).</p> * * @param x the first {@code int} to compare * @param y the second {@code int} to compare * @return the value {@code 0} if {@code x == y}; a value less * than {@code 0} if {@code x < y} as unsigned values; and * a value greater than {@code 0} if {@code x > y} as * unsigned values */
private static int compareUnsigned(final int x, final int y) { return Integer.compare(x + Integer.MIN_VALUE, y + Integer.MIN_VALUE); }
Create a positive capacity at least as large the minimum required capacity. If the minimum capacity is negative then this throws an OutOfMemoryError as no array can be allocated.
Params:
  • minCapacity – the minimum capacity
Throws:
Returns:the capacity
/** * Create a positive capacity at least as large the minimum required capacity. * If the minimum capacity is negative then this throws an OutOfMemoryError as no array * can be allocated. * * @param minCapacity the minimum capacity * @return the capacity * @throws OutOfMemoryError if the {@code minCapacity} is negative */
private static int createPositiveCapacity(final int minCapacity) { if (minCapacity < 0) { // overflow throw new OutOfMemoryError("Unable to allocate array size: " + (minCapacity & 0xffffffffL)); } // This is called when we require buffer expansion to a very big array. // Use the conservative maximum buffer size if possible, otherwise the biggest required. // // Note: In this situation JDK 1.8 java.util.ArrayList returns Integer.MAX_VALUE. // This excludes some VMs that can exceed MAX_BUFFER_SIZE but not allocate a full // Integer.MAX_VALUE length array. // The result is that we may have to allocate an array of this size more than once if // the capacity must be expanded again. return (minCapacity > MAX_BUFFER_SIZE) ? minCapacity : MAX_BUFFER_SIZE; }
Gets a copy of the chunk separator per RFC 2045 section 2.1.
See Also:
Returns:the chunk separator
Since:1.15
/** * Gets a copy of the chunk separator per RFC 2045 section 2.1. * * @return the chunk separator * @see <a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045 section 2.1</a> * @since 1.15 */
public static byte[] getChunkSeparator() { return CHUNK_SEPARATOR.clone(); }
Checks if a byte value is whitespace or not. Whitespace is taken to mean: space, tab, CR, LF
Params:
  • byteToCheck – the byte to check
Returns:true if byte is whitespace, false otherwise
/** * Checks if a byte value is whitespace or not. * Whitespace is taken to mean: space, tab, CR, LF * @param byteToCheck * the byte to check * @return true if byte is whitespace, false otherwise */
protected static boolean isWhiteSpace(final byte byteToCheck) { switch (byteToCheck) { case ' ' : case '\n' : case '\r' : case '\t' : return true; default : return false; } }
Increases our buffer by the DEFAULT_BUFFER_RESIZE_FACTOR.
Params:
  • context – the context to be used
  • minCapacity – the minimum required capacity
Throws:
Returns:the resized byte[] buffer
/** * Increases our buffer by the {@link #DEFAULT_BUFFER_RESIZE_FACTOR}. * @param context the context to be used * @param minCapacity the minimum required capacity * @return the resized byte[] buffer * @throws OutOfMemoryError if the {@code minCapacity} is negative */
private static byte[] resizeBuffer(final Context context, final int minCapacity) { // Overflow-conscious code treats the min and new capacity as unsigned. final int oldCapacity = context.buffer.length; int newCapacity = oldCapacity * DEFAULT_BUFFER_RESIZE_FACTOR; if (compareUnsigned(newCapacity, minCapacity) < 0) { newCapacity = minCapacity; } if (compareUnsigned(newCapacity, MAX_BUFFER_SIZE) > 0) { newCapacity = createPositiveCapacity(minCapacity); } final byte[] b = new byte[newCapacity]; System.arraycopy(context.buffer, 0, b, 0, context.buffer.length); context.buffer = b; return b; } protected final byte pad; // instance variable just in case it needs to vary later
Number of bytes in each full block of unencoded data, e.g. 4 for Base64 and 5 for Base32
/** Number of bytes in each full block of unencoded data, e.g. 4 for Base64 and 5 for Base32 */
private final int unencodedBlockSize;
Number of bytes in each full block of encoded data, e.g. 3 for Base64 and 8 for Base32
/** Number of bytes in each full block of encoded data, e.g. 3 for Base64 and 8 for Base32 */
private final int encodedBlockSize;
Chunksize for encoding. Not used when decoding. A value of zero or less implies no chunking of the encoded data. Rounded down to nearest multiple of encodedBlockSize.
/** * Chunksize for encoding. Not used when decoding. * A value of zero or less implies no chunking of the encoded data. * Rounded down to nearest multiple of encodedBlockSize. */
protected final int lineLength;
Size of chunk separator. Not used unless lineLength > 0.
/** * Size of chunk separator. Not used unless {@link #lineLength} &gt; 0. */
private final int chunkSeparatorLength;
Note lineLength is rounded down to the nearest multiple of the encoded block size. If chunkSeparatorLength is zero, then chunking is disabled.
Params:
  • unencodedBlockSize – the size of an unencoded block (e.g. Base64 = 3)
  • encodedBlockSize – the size of an encoded block (e.g. Base64 = 4)
  • lineLength – if > 0, use chunking with a length lineLength
  • chunkSeparatorLength – the chunk separator length, if relevant
/** * Note {@code lineLength} is rounded down to the nearest multiple of the encoded block size. * If {@code chunkSeparatorLength} is zero, then chunking is disabled. * @param unencodedBlockSize the size of an unencoded block (e.g. Base64 = 3) * @param encodedBlockSize the size of an encoded block (e.g. Base64 = 4) * @param lineLength if &gt; 0, use chunking with a length {@code lineLength} * @param chunkSeparatorLength the chunk separator length, if relevant */
protected BaseNCodec(final int unencodedBlockSize, final int encodedBlockSize, final int lineLength, final int chunkSeparatorLength) { this(unencodedBlockSize, encodedBlockSize, lineLength, chunkSeparatorLength, PAD_DEFAULT); }
Note lineLength is rounded down to the nearest multiple of the encoded block size. If chunkSeparatorLength is zero, then chunking is disabled.
Params:
  • unencodedBlockSize – the size of an unencoded block (e.g. Base64 = 3)
  • encodedBlockSize – the size of an encoded block (e.g. Base64 = 4)
  • lineLength – if > 0, use chunking with a length lineLength
  • chunkSeparatorLength – the chunk separator length, if relevant
  • pad – byte used as padding byte.
/** * Note {@code lineLength} is rounded down to the nearest multiple of the encoded block size. * If {@code chunkSeparatorLength} is zero, then chunking is disabled. * @param unencodedBlockSize the size of an unencoded block (e.g. Base64 = 3) * @param encodedBlockSize the size of an encoded block (e.g. Base64 = 4) * @param lineLength if &gt; 0, use chunking with a length {@code lineLength} * @param chunkSeparatorLength the chunk separator length, if relevant * @param pad byte used as padding byte. */
protected BaseNCodec(final int unencodedBlockSize, final int encodedBlockSize, final int lineLength, final int chunkSeparatorLength, final byte pad) { this.unencodedBlockSize = unencodedBlockSize; this.encodedBlockSize = encodedBlockSize; final boolean useChunking = lineLength > 0 && chunkSeparatorLength > 0; this.lineLength = useChunking ? (lineLength / encodedBlockSize) * encodedBlockSize : 0; this.chunkSeparatorLength = chunkSeparatorLength; this.pad = pad; }
Returns the amount of buffered data available for reading.
Params:
  • context – the context to be used
Returns:The amount of buffered data available for reading.
/** * Returns the amount of buffered data available for reading. * * @param context the context to be used * @return The amount of buffered data available for reading. */
int available(final Context context) { // package protected for access from I/O streams return context.buffer != null ? context.pos - context.readPos : 0; }
Tests a given byte array to see if it contains any characters within the alphabet or PAD. Intended for use in checking line-ending arrays
Params:
  • arrayOctet – byte array to test
Returns:true if any byte is a valid character in the alphabet or PAD; false otherwise
/** * Tests a given byte array to see if it contains any characters within the alphabet or PAD. * * Intended for use in checking line-ending arrays * * @param arrayOctet * byte array to test * @return {@code true} if any byte is a valid character in the alphabet or PAD; {@code false} otherwise */
protected boolean containsAlphabetOrPad(final byte[] arrayOctet) { if (arrayOctet == null) { return false; } for (final byte element : arrayOctet) { if (pad == element || isInAlphabet(element)) { return true; } } return false; }
Decodes a byte[] containing characters in the Base-N alphabet.
Params:
  • pArray – A byte array containing Base-N character data
Returns:a byte array containing binary data
/** * Decodes a byte[] containing characters in the Base-N alphabet. * * @param pArray * A byte array containing Base-N character data * @return a byte array containing binary data */
public byte[] decode(final byte[] pArray) { return decode(pArray, 0, pArray.length); } public byte[] decode(final byte[] pArray, final int off, final int len) { if (pArray == null || len == 0) { return new byte[0]; } final Context context = new Context(); decode(pArray, off, len, context); decode(pArray, off, EOF, context); // Notify decoder of EOF. final byte[] result = new byte[context.pos]; readResults(result, 0, result.length, context); return result; } // package protected for access from I/O streams abstract void decode(byte[] pArray, int i, int length, Context context);
Decodes a String containing characters in the Base-N alphabet.
Params:
  • pArray – A String containing Base-N character data
Returns:a byte array containing binary data
/** * Decodes a String containing characters in the Base-N alphabet. * * @param pArray * A String containing Base-N character data * @return a byte array containing binary data */
public byte[] decode(final String pArray) { return decode(StringUtils.getBytesUtf8(pArray)); }
Encodes a byte[] containing binary data, into a byte[] containing characters in the alphabet.
Params:
  • pArray – a byte array containing binary data
Returns:A byte array containing only the base N alphabetic character data
/** * Encodes a byte[] containing binary data, into a byte[] containing characters in the alphabet. * * @param pArray * a byte array containing binary data * @return A byte array containing only the base N alphabetic character data */
public byte[] encode(final byte[] pArray) { if (pArray == null || pArray.length == 0) { return pArray; } return encode(pArray, 0, pArray.length); }
Encodes a byte[] containing binary data, into a byte[] containing characters in the alphabet.
Params:
  • pArray – a byte array containing binary data
  • offset – initial offset of the subarray.
  • length – length of the subarray.
Returns:A byte array containing only the base N alphabetic character data
Since:1.11
/** * Encodes a byte[] containing binary data, into a byte[] containing * characters in the alphabet. * * @param pArray * a byte array containing binary data * @param offset * initial offset of the subarray. * @param length * length of the subarray. * @return A byte array containing only the base N alphabetic character data * @since 1.11 */
public byte[] encode(final byte[] pArray, final int offset, final int length) { if (pArray == null || pArray.length == 0) { return pArray; } final Context context = new Context(); encode(pArray, offset, length, context); encode(pArray, offset, EOF, context); // Notify encoder of EOF. final byte[] buf = new byte[context.pos - context.readPos]; readResults(buf, 0, buf.length, context); return buf; } // package protected for access from I/O streams abstract void encode(byte[] pArray, int i, int length, Context context);
Encodes a byte[] containing binary data, into a String containing characters in the appropriate alphabet. Uses UTF8 encoding.
Params:
  • pArray – a byte array containing binary data
Returns:String containing only character data in the appropriate alphabet.
Since:1.5 This is a duplicate of encodeToString(byte[]); it was merged during refactoring.
/** * Encodes a byte[] containing binary data, into a String containing characters in the appropriate alphabet. * Uses UTF8 encoding. * * @param pArray a byte array containing binary data * @return String containing only character data in the appropriate alphabet. * @since 1.5 * This is a duplicate of {@link #encodeToString(byte[])}; it was merged during refactoring. */
public String encodeAsString(final byte[] pArray){ return StringUtils.newStringUtf8(encode(pArray)); }
Encodes a byte[] containing binary data, into a String containing characters in the Base-N alphabet. Uses UTF8 encoding.
Params:
  • pArray – a byte array containing binary data
Returns:A String containing only Base-N character data
/** * Encodes a byte[] containing binary data, into a String containing characters in the Base-N alphabet. * Uses UTF8 encoding. * * @param pArray * a byte array containing binary data * @return A String containing only Base-N character data */
public String encodeToString(final byte[] pArray) { return StringUtils.newStringUtf8(encode(pArray)); }
Ensure that the buffer has room for size bytes
Params:
  • size – minimum spare space required
  • context – the context to be used
Returns:the buffer
/** * Ensure that the buffer has room for {@code size} bytes * * @param size minimum spare space required * @param context the context to be used * @return the buffer */
protected byte[] ensureBufferSize(final int size, final Context context){ if (context.buffer == null) { context.buffer = new byte[Math.max(size, getDefaultBufferSize())]; context.pos = 0; context.readPos = 0; // Overflow-conscious: // x + y > z == x + y - z > 0 } else if (context.pos + size - context.buffer.length > 0) { return resizeBuffer(context, context.pos + size); } return context.buffer; }
Get the default buffer size. Can be overridden.
Returns:the default buffer size.
/** * Get the default buffer size. Can be overridden. * * @return the default buffer size. */
protected int getDefaultBufferSize() { return DEFAULT_BUFFER_SIZE; }
Calculates the amount of space needed to encode the supplied array.
Params:
  • pArray – byte[] array which will later be encoded
Returns:amount of space needed to encoded the supplied array. Returns a long since a max-len array will require > Integer.MAX_VALUE
/** * Calculates the amount of space needed to encode the supplied array. * * @param pArray byte[] array which will later be encoded * * @return amount of space needed to encoded the supplied array. * Returns a long since a max-len array will require &gt; Integer.MAX_VALUE */
public long getEncodedLength(final byte[] pArray) { // Calculate non-chunked size - rounded up to allow for padding // cast to long is needed to avoid possibility of overflow long len = ((pArray.length + unencodedBlockSize-1) / unencodedBlockSize) * (long) encodedBlockSize; if (lineLength > 0) { // We're using chunking // Round up to nearest multiple len += ((len + lineLength-1) / lineLength) * chunkSeparatorLength; } return len; }
Returns true if this object has buffered data for reading.
Params:
  • context – the context to be used
Returns:true if there is data still available for reading.
/** * Returns true if this object has buffered data for reading. * * @param context the context to be used * @return true if there is data still available for reading. */
boolean hasData(final Context context) { // package protected for access from I/O streams return context.buffer != null; }
Returns whether or not the octet is in the current alphabet. Does not allow whitespace or pad.
Params:
  • value – The value to test
Returns:true if the value is defined in the current alphabet, false otherwise.
/** * Returns whether or not the {@code octet} is in the current alphabet. * Does not allow whitespace or pad. * * @param value The value to test * * @return {@code true} if the value is defined in the current alphabet, {@code false} otherwise. */
protected abstract boolean isInAlphabet(byte value);
Tests a given byte array to see if it contains only valid characters within the alphabet. The method optionally treats whitespace and pad as valid.
Params:
  • arrayOctet – byte array to test
  • allowWSPad – if true, then whitespace and PAD are also allowed
Returns:true if all bytes are valid characters in the alphabet or if the byte array is empty; false, otherwise
/** * Tests a given byte array to see if it contains only valid characters within the alphabet. * The method optionally treats whitespace and pad as valid. * * @param arrayOctet byte array to test * @param allowWSPad if {@code true}, then whitespace and PAD are also allowed * * @return {@code true} if all bytes are valid characters in the alphabet or if the byte array is empty; * {@code false}, otherwise */
public boolean isInAlphabet(final byte[] arrayOctet, final boolean allowWSPad) { for (final byte octet : arrayOctet) { if (!isInAlphabet(octet) && (!allowWSPad || (octet != pad) && !isWhiteSpace(octet))) { return false; } } return true; }
Tests a given String to see if it contains only valid characters within the alphabet. The method treats whitespace and PAD as valid.
Params:
  • basen – String to test
See Also:
Returns:true if all characters in the String are valid characters in the alphabet or if the String is empty; false, otherwise
/** * Tests a given String to see if it contains only valid characters within the alphabet. * The method treats whitespace and PAD as valid. * * @param basen String to test * @return {@code true} if all characters in the String are valid characters in the alphabet or if * the String is empty; {@code false}, otherwise * @see #isInAlphabet(byte[], boolean) */
public boolean isInAlphabet(final String basen) { return isInAlphabet(StringUtils.getBytesUtf8(basen), true); }
Extracts buffered data into the provided byte[] array, starting at position bPos, up to a maximum of bAvail bytes. Returns how many bytes were actually extracted.

Package protected for access from I/O streams.

Params:
  • b – byte[] array to extract the buffered data into.
  • bPos – position in byte[] array to start extraction at.
  • bAvail – amount of bytes we're allowed to extract. We may extract fewer (if fewer are available).
  • context – the context to be used
Returns:The number of bytes successfully extracted into the provided byte[] array.
/** * Extracts buffered data into the provided byte[] array, starting at position bPos, up to a maximum of bAvail * bytes. Returns how many bytes were actually extracted. * <p> * Package protected for access from I/O streams. * * @param b * byte[] array to extract the buffered data into. * @param bPos * position in byte[] array to start extraction at. * @param bAvail * amount of bytes we're allowed to extract. We may extract fewer (if fewer are available). * @param context * the context to be used * @return The number of bytes successfully extracted into the provided byte[] array. */
int readResults(final byte[] b, final int bPos, final int bAvail, final Context context) { if (context.buffer != null) { final int len = Math.min(available(context), bAvail); System.arraycopy(context.buffer, context.readPos, b, bPos, len); context.readPos += len; if (context.readPos >= context.pos) { context.buffer = null; // so hasData() will return false, and this method can return -1 } return len; } return context.eof ? EOF : 0; } }