/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.util; // from org.apache.solr.util rev 555343

A variety of high efficiency bit twiddling routines.
@lucene.internal
/** A variety of high efficiency bit twiddling routines. * @lucene.internal */
public final class BitUtil { private BitUtil() {} // no instance // The pop methods used to rely on bit-manipulation tricks for speed but it // turns out that it is faster to use the Long.bitCount method (which is an // intrinsic since Java 6u18) in a naive loop, see LUCENE-2221
Returns the number of set bits in an array of longs.
/** Returns the number of set bits in an array of longs. */
public static long pop_array(long[] arr, int wordOffset, int numWords) { long popCount = 0; for (int i = wordOffset, end = wordOffset + numWords; i < end; ++i) { popCount += Long.bitCount(arr[i]); } return popCount; }
Returns the popcount or cardinality of the two sets after an intersection. Neither array is modified.
/** Returns the popcount or cardinality of the two sets after an intersection. * Neither array is modified. */
public static long pop_intersect(long[] arr1, long[] arr2, int wordOffset, int numWords) { long popCount = 0; for (int i = wordOffset, end = wordOffset + numWords; i < end; ++i) { popCount += Long.bitCount(arr1[i] & arr2[i]); } return popCount; }
Returns the popcount or cardinality of the union of two sets. Neither array is modified.
/** Returns the popcount or cardinality of the union of two sets. * Neither array is modified. */
public static long pop_union(long[] arr1, long[] arr2, int wordOffset, int numWords) { long popCount = 0; for (int i = wordOffset, end = wordOffset + numWords; i < end; ++i) { popCount += Long.bitCount(arr1[i] | arr2[i]); } return popCount; }
Returns the popcount or cardinality of A & ~B. Neither array is modified.
/** Returns the popcount or cardinality of {@code A & ~B}. * Neither array is modified. */
public static long pop_andnot(long[] arr1, long[] arr2, int wordOffset, int numWords) { long popCount = 0; for (int i = wordOffset, end = wordOffset + numWords; i < end; ++i) { popCount += Long.bitCount(arr1[i] & ~arr2[i]); } return popCount; }
Returns the popcount or cardinality of A ^ B Neither array is modified.
/** Returns the popcount or cardinality of A ^ B * Neither array is modified. */
public static long pop_xor(long[] arr1, long[] arr2, int wordOffset, int numWords) { long popCount = 0; for (int i = wordOffset, end = wordOffset + numWords; i < end; ++i) { popCount += Long.bitCount(arr1[i] ^ arr2[i]); } return popCount; }
returns the next highest power of two, or the current value if it's already a power of two or zero
/** returns the next highest power of two, or the current value if it's already a power of two or zero*/
public static int nextHighestPowerOfTwo(int v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v; }
returns the next highest power of two, or the current value if it's already a power of two or zero
/** returns the next highest power of two, or the current value if it's already a power of two or zero*/
public static long nextHighestPowerOfTwo(long v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v |= v >> 32; v++; return v; } // magic numbers for bit interleaving private static final long MAGIC0 = 0x5555555555555555L; private static final long MAGIC1 = 0x3333333333333333L; private static final long MAGIC2 = 0x0F0F0F0F0F0F0F0FL; private static final long MAGIC3 = 0x00FF00FF00FF00FFL; private static final long MAGIC4 = 0x0000FFFF0000FFFFL; private static final long MAGIC5 = 0x00000000FFFFFFFFL; private static final long MAGIC6 = 0xAAAAAAAAAAAAAAAAL; // shift values for bit interleaving private static final long SHIFT0 = 1; private static final long SHIFT1 = 2; private static final long SHIFT2 = 4; private static final long SHIFT3 = 8; private static final long SHIFT4 = 16;
Interleaves the first 32 bits of each long value Adapted from: http://graphics.stanford.edu/~seander/bithacks.html#InterleaveBMN
/** * Interleaves the first 32 bits of each long value * * Adapted from: http://graphics.stanford.edu/~seander/bithacks.html#InterleaveBMN */
public static long interleave(int even, int odd) { long v1 = 0x00000000FFFFFFFFL & even; long v2 = 0x00000000FFFFFFFFL & odd; v1 = (v1 | (v1 << SHIFT4)) & MAGIC4; v1 = (v1 | (v1 << SHIFT3)) & MAGIC3; v1 = (v1 | (v1 << SHIFT2)) & MAGIC2; v1 = (v1 | (v1 << SHIFT1)) & MAGIC1; v1 = (v1 | (v1 << SHIFT0)) & MAGIC0; v2 = (v2 | (v2 << SHIFT4)) & MAGIC4; v2 = (v2 | (v2 << SHIFT3)) & MAGIC3; v2 = (v2 | (v2 << SHIFT2)) & MAGIC2; v2 = (v2 | (v2 << SHIFT1)) & MAGIC1; v2 = (v2 | (v2 << SHIFT0)) & MAGIC0; return (v2<<1) | v1; }
Extract just the even-bits value as a long from the bit-interleaved value
/** * Extract just the even-bits value as a long from the bit-interleaved value */
public static long deinterleave(long b) { b &= MAGIC0; b = (b ^ (b >>> SHIFT0)) & MAGIC1; b = (b ^ (b >>> SHIFT1)) & MAGIC2; b = (b ^ (b >>> SHIFT2)) & MAGIC3; b = (b ^ (b >>> SHIFT3)) & MAGIC4; b = (b ^ (b >>> SHIFT4)) & MAGIC5; return b; }
flip flops odd with even bits
/** * flip flops odd with even bits */
public static long flipFlop(final long b) { return ((b & MAGIC6) >>> 1) | ((b & MAGIC0) << 1 ); }
Same as zigZagEncode(long) but on integers.
/** Same as {@link #zigZagEncode(long)} but on integers. */
public static int zigZagEncode(int i) { return (i >> 31) ^ (i << 1); }
Zig-zag encode the provided long. Assuming the input is a signed long whose absolute value can be stored on n bits, the returned value will be an unsigned long that can be stored on n+1 bits.
/** * <a href="https://developers.google.com/protocol-buffers/docs/encoding#types">Zig-zag</a> * encode the provided long. Assuming the input is a signed long whose * absolute value can be stored on <tt>n</tt> bits, the returned value will * be an unsigned long that can be stored on <tt>n+1</tt> bits. */
public static long zigZagEncode(long l) { return (l >> 63) ^ (l << 1); }
Decode an int previously encoded with zigZagEncode(int).
/** Decode an int previously encoded with {@link #zigZagEncode(int)}. */
public static int zigZagDecode(int i) { return ((i >>> 1) ^ -(i & 1)); }
Decode a long previously encoded with zigZagEncode(long).
/** Decode a long previously encoded with {@link #zigZagEncode(long)}. */
public static long zigZagDecode(long l) { return ((l >>> 1) ^ -(l & 1)); } }