/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.search;
import java.io.IOException;
import java.util.Objects;
import org.apache.lucene.index.SingleTermsEnum;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.util.AttributeSource;
import org.apache.lucene.util.automaton.CompiledAutomaton;
import org.apache.lucene.util.automaton.LevenshteinAutomata;
Implements the fuzzy search query. The similarity measurement
is based on the Damerau-Levenshtein (optimal string alignment) algorithm,
though you can explicitly choose classic Levenshtein by passing false
to the transpositions
parameter.
This query uses TopTermsBlendedFreqScoringRewrite
as default. So terms will be collected and scored according to their edit distance. Only the top terms are used for building the BooleanQuery
. It is not recommended to change the rewrite mode for fuzzy queries.
At most, this query will match terms up to 2 edits. Higher distances (especially with transpositions enabled), are generally not useful and will match a significant amount of the term dictionary. If you really want this, consider using an n-gram indexing technique (such as the SpellChecker in the suggest module) instead.
NOTE: terms of length 1 or 2 will sometimes not match because of how the scaled
distance between two terms is computed. For a term to match, the edit distance between
the terms must be less than the minimum length term (either the input term, or
the candidate term). For example, FuzzyQuery on term "abcd" with maxEdits=2 will
not match an indexed term "ab", and FuzzyQuery on term "a" with maxEdits=2 will not
match an indexed term "abc".
/** Implements the fuzzy search query. The similarity measurement
* is based on the Damerau-Levenshtein (optimal string alignment) algorithm,
* though you can explicitly choose classic Levenshtein by passing <code>false</code>
* to the <code>transpositions</code> parameter.
*
* <p>This query uses {@link MultiTermQuery.TopTermsBlendedFreqScoringRewrite}
* as default. So terms will be collected and scored according to their
* edit distance. Only the top terms are used for building the {@link BooleanQuery}.
* It is not recommended to change the rewrite mode for fuzzy queries.
*
* <p>At most, this query will match terms up to
* {@value org.apache.lucene.util.automaton.LevenshteinAutomata#MAXIMUM_SUPPORTED_DISTANCE} edits.
* Higher distances (especially with transpositions enabled), are generally not useful and
* will match a significant amount of the term dictionary. If you really want this, consider
* using an n-gram indexing technique (such as the SpellChecker in the
* <a href="{@docRoot}/../suggest/overview-summary.html">suggest module</a>) instead.
*
* <p>NOTE: terms of length 1 or 2 will sometimes not match because of how the scaled
* distance between two terms is computed. For a term to match, the edit distance between
* the terms must be less than the minimum length term (either the input term, or
* the candidate term). For example, FuzzyQuery on term "abcd" with maxEdits=2 will
* not match an indexed term "ab", and FuzzyQuery on term "a" with maxEdits=2 will not
* match an indexed term "abc".
*/
public class FuzzyQuery extends MultiTermQuery {
public final static int defaultMaxEdits = LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE;
public final static int defaultPrefixLength = 0;
public final static int defaultMaxExpansions = 50;
public final static boolean defaultTranspositions = true;
private final int maxEdits;
private final int maxExpansions;
private final boolean transpositions;
private final int prefixLength;
private final Term term;
Create a new FuzzyQuery that will match terms with an edit distance
of at most maxEdits
to term
.
If a prefixLength
> 0 is specified, a common prefix
of that length is also required.
Params: - term – the term to search for
- maxEdits – must be
>= 0
and <=
LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE
. - prefixLength – length of common (non-fuzzy) prefix
- maxExpansions – the maximum number of terms to match. If this number is greater than
BooleanQuery.getMaxClauseCount
when the query is rewritten, then the maxClauseCount will be used instead. - transpositions – true if transpositions should be treated as a primitive
edit operation. If this is false, comparisons will implement the classic
Levenshtein algorithm.
/**
* Create a new FuzzyQuery that will match terms with an edit distance
* of at most <code>maxEdits</code> to <code>term</code>.
* If a <code>prefixLength</code> > 0 is specified, a common prefix
* of that length is also required.
*
* @param term the term to search for
* @param maxEdits must be {@code >= 0} and {@code <=} {@link LevenshteinAutomata#MAXIMUM_SUPPORTED_DISTANCE}.
* @param prefixLength length of common (non-fuzzy) prefix
* @param maxExpansions the maximum number of terms to match. If this number is
* greater than {@link BooleanQuery#getMaxClauseCount} when the query is rewritten,
* then the maxClauseCount will be used instead.
* @param transpositions true if transpositions should be treated as a primitive
* edit operation. If this is false, comparisons will implement the classic
* Levenshtein algorithm.
*/
public FuzzyQuery(Term term, int maxEdits, int prefixLength, int maxExpansions, boolean transpositions) {
super(term.field());
if (maxEdits < 0 || maxEdits > LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE) {
throw new IllegalArgumentException("maxEdits must be between 0 and " + LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE);
}
if (prefixLength < 0) {
throw new IllegalArgumentException("prefixLength cannot be negative.");
}
if (maxExpansions <= 0) {
throw new IllegalArgumentException("maxExpansions must be positive.");
}
this.term = term;
this.maxEdits = maxEdits;
this.prefixLength = prefixLength;
this.transpositions = transpositions;
this.maxExpansions = maxExpansions;
setRewriteMethod(new MultiTermQuery.TopTermsBlendedFreqScoringRewrite(maxExpansions));
}
/**
* Calls {@link #FuzzyQuery(Term, int, int, int, boolean)
* FuzzyQuery(term, maxEdits, prefixLength, defaultMaxExpansions, defaultTranspositions)}.
*/
public FuzzyQuery(Term term, int maxEdits, int prefixLength) {
this(term, maxEdits, prefixLength, defaultMaxExpansions, defaultTranspositions);
}
/**
* Calls {@link #FuzzyQuery(Term, int, int) FuzzyQuery(term, maxEdits, defaultPrefixLength)}.
*/
public FuzzyQuery(Term term, int maxEdits) {
this(term, maxEdits, defaultPrefixLength);
}
/**
* Calls {@link #FuzzyQuery(Term, int) FuzzyQuery(term, defaultMaxEdits)}.
*/
public FuzzyQuery(Term term) {
this(term, defaultMaxEdits);
}
Returns: the maximum number of edit distances allowed for this query to match.
/**
* @return the maximum number of edit distances allowed for this query to match.
*/
public int getMaxEdits() {
return maxEdits;
}
Returns the non-fuzzy prefix length. This is the number of characters at the start
of a term that must be identical (not fuzzy) to the query term if the query
is to match that term.
/**
* Returns the non-fuzzy prefix length. This is the number of characters at the start
* of a term that must be identical (not fuzzy) to the query term if the query
* is to match that term.
*/
public int getPrefixLength() {
return prefixLength;
}
Returns true if transpositions should be treated as a primitive edit operation.
If this is false, comparisons will implement the classic Levenshtein algorithm.
/**
* Returns true if transpositions should be treated as a primitive edit operation.
* If this is false, comparisons will implement the classic Levenshtein algorithm.
*/
public boolean getTranspositions() {
return transpositions;
}
Returns the compiled automata used to match terms
/**
* Returns the compiled automata used to match terms
*/
public CompiledAutomaton getAutomata() {
FuzzyAutomatonBuilder builder = new FuzzyAutomatonBuilder(term.text(), maxEdits, prefixLength, transpositions);
return builder.buildMaxEditAutomaton();
}
@Override
public void visit(QueryVisitor visitor) {
if (visitor.acceptField(field)) {
visitor.consumeTermsMatching(this, term.field(), () -> getAutomata().runAutomaton);
}
}
@Override
protected TermsEnum getTermsEnum(Terms terms, AttributeSource atts) throws IOException {
if (maxEdits == 0 || prefixLength >= term.text().length()) { // can only match if it's exact
return new SingleTermsEnum(terms.iterator(), term.bytes());
}
return new FuzzyTermsEnum(terms, atts, getTerm(), maxEdits, prefixLength, transpositions);
}
Returns the pattern term.
/**
* Returns the pattern term.
*/
public Term getTerm() {
return term;
}
@Override
public String toString(String field) {
final StringBuilder buffer = new StringBuilder();
if (!term.field().equals(field)) {
buffer.append(term.field());
buffer.append(":");
}
buffer.append(term.text());
buffer.append('~');
buffer.append(maxEdits);
return buffer.toString();
}
@Override
public int hashCode() {
final int prime = 31;
int result = super.hashCode();
result = prime * result + maxEdits;
result = prime * result + prefixLength;
result = prime * result + maxExpansions;
result = prime * result + (transpositions ? 0 : 1);
result = prime * result + ((term == null) ? 0 : term.hashCode());
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (!super.equals(obj))
return false;
if (getClass() != obj.getClass())
return false;
FuzzyQuery other = (FuzzyQuery) obj;
return Objects.equals(maxEdits, other.maxEdits) && Objects.equals(prefixLength, other.prefixLength)
&& Objects.equals(maxExpansions, other.maxExpansions) && Objects.equals(transpositions, other.transpositions)
&& Objects.equals(term, other.term);
}
Deprecated: pass integer edit distances instead.
/**
* @deprecated pass integer edit distances instead.
*/
@Deprecated
public final static float defaultMinSimilarity = LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE;
Helper function to convert from deprecated "minimumSimilarity" fractions
to raw edit distances.
Params: - minimumSimilarity – scaled similarity
- termLen – length (in unicode codepoints) of the term.
Returns: equivalent number of maxEdits Deprecated: pass integer edit distances instead.
/**
* Helper function to convert from deprecated "minimumSimilarity" fractions
* to raw edit distances.
*
* @param minimumSimilarity scaled similarity
* @param termLen length (in unicode codepoints) of the term.
* @return equivalent number of maxEdits
* @deprecated pass integer edit distances instead.
*/
@Deprecated
public static int floatToEdits(float minimumSimilarity, int termLen) {
if (minimumSimilarity >= 1f) {
return (int) Math.min(minimumSimilarity, LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE);
} else if (minimumSimilarity == 0.0f) {
return 0; // 0 means exact, not infinite # of edits!
} else {
return Math.min((int) ((1D-minimumSimilarity) * termLen),
LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE);
}
}
}