/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.transform;
import java.io.Serializable;
import java.lang.reflect.Array;
import org.apache.commons.math3.analysis.FunctionUtils;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.complex.Complex;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.ArithmeticUtils;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;
Implements the Fast Fourier Transform for transformation of one-dimensional
real or complex data sets. For reference, see Applied Numerical Linear
Algebra, ISBN 0898713897, chapter 6.
There are several variants of the discrete Fourier transform, with various normalization conventions, which are specified by the parameter DftNormalization
.
The current implementation of the discrete Fourier transform as a fast
Fourier transform requires the length of the data set to be a power of 2.
This greatly simplifies and speeds up the code. Users can pad the data with
zeros to meet this requirement. There are other flavors of FFT, for
reference, see S. Winograd,
On computing the discrete Fourier transform, Mathematics of
Computation, 32 (1978), 175 - 199.
See Also: Since: 1.2
/**
* Implements the Fast Fourier Transform for transformation of one-dimensional
* real or complex data sets. For reference, see <em>Applied Numerical Linear
* Algebra</em>, ISBN 0898713897, chapter 6.
* <p>
* There are several variants of the discrete Fourier transform, with various
* normalization conventions, which are specified by the parameter
* {@link DftNormalization}.
* <p>
* The current implementation of the discrete Fourier transform as a fast
* Fourier transform requires the length of the data set to be a power of 2.
* This greatly simplifies and speeds up the code. Users can pad the data with
* zeros to meet this requirement. There are other flavors of FFT, for
* reference, see S. Winograd,
* <i>On computing the discrete Fourier transform</i>, Mathematics of
* Computation, 32 (1978), 175 - 199.
*
* @see DftNormalization
* @since 1.2
*/
public class FastFourierTransformer implements Serializable {
Serializable version identifier. /** Serializable version identifier. */
static final long serialVersionUID = 20120210L;
W_SUB_N_R[i]
is the real part of exp(- 2 * i * pi / n)
: W_SUB_N_R[i] = cos(2 * pi/ n)
, where n = 2^i
. /**
* {@code W_SUB_N_R[i]} is the real part of
* {@code exp(- 2 * i * pi / n)}:
* {@code W_SUB_N_R[i] = cos(2 * pi/ n)}, where {@code n = 2^i}.
*/
private static final double[] W_SUB_N_R =
{ 0x1.0p0, -0x1.0p0, 0x1.1a62633145c07p-54, 0x1.6a09e667f3bcdp-1
, 0x1.d906bcf328d46p-1, 0x1.f6297cff75cbp-1, 0x1.fd88da3d12526p-1, 0x1.ff621e3796d7ep-1
, 0x1.ffd886084cd0dp-1, 0x1.fff62169b92dbp-1, 0x1.fffd8858e8a92p-1, 0x1.ffff621621d02p-1
, 0x1.ffffd88586ee6p-1, 0x1.fffff62161a34p-1, 0x1.fffffd8858675p-1, 0x1.ffffff621619cp-1
, 0x1.ffffffd885867p-1, 0x1.fffffff62161ap-1, 0x1.fffffffd88586p-1, 0x1.ffffffff62162p-1
, 0x1.ffffffffd8858p-1, 0x1.fffffffff6216p-1, 0x1.fffffffffd886p-1, 0x1.ffffffffff621p-1
, 0x1.ffffffffffd88p-1, 0x1.fffffffffff62p-1, 0x1.fffffffffffd9p-1, 0x1.ffffffffffff6p-1
, 0x1.ffffffffffffep-1, 0x1.fffffffffffffp-1, 0x1.0p0, 0x1.0p0
, 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0
, 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0
, 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0
, 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0
, 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0
, 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0
, 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0
, 0x1.0p0, 0x1.0p0, 0x1.0p0 };
W_SUB_N_I[i]
is the imaginary part of exp(- 2 * i * pi / n)
: W_SUB_N_I[i] = -sin(2 * pi/ n)
, where n = 2^i
. /**
* {@code W_SUB_N_I[i]} is the imaginary part of
* {@code exp(- 2 * i * pi / n)}:
* {@code W_SUB_N_I[i] = -sin(2 * pi/ n)}, where {@code n = 2^i}.
*/
private static final double[] W_SUB_N_I =
{ 0x1.1a62633145c07p-52, -0x1.1a62633145c07p-53, -0x1.0p0, -0x1.6a09e667f3bccp-1
, -0x1.87de2a6aea963p-2, -0x1.8f8b83c69a60ap-3, -0x1.917a6bc29b42cp-4, -0x1.91f65f10dd814p-5
, -0x1.92155f7a3667ep-6, -0x1.921d1fcdec784p-7, -0x1.921f0fe670071p-8, -0x1.921f8becca4bap-9
, -0x1.921faaee6472dp-10, -0x1.921fb2aecb36p-11, -0x1.921fb49ee4ea6p-12, -0x1.921fb51aeb57bp-13
, -0x1.921fb539ecf31p-14, -0x1.921fb541ad59ep-15, -0x1.921fb5439d73ap-16, -0x1.921fb544197ap-17
, -0x1.921fb544387bap-18, -0x1.921fb544403c1p-19, -0x1.921fb544422c2p-20, -0x1.921fb54442a83p-21
, -0x1.921fb54442c73p-22, -0x1.921fb54442cefp-23, -0x1.921fb54442d0ep-24, -0x1.921fb54442d15p-25
, -0x1.921fb54442d17p-26, -0x1.921fb54442d18p-27, -0x1.921fb54442d18p-28, -0x1.921fb54442d18p-29
, -0x1.921fb54442d18p-30, -0x1.921fb54442d18p-31, -0x1.921fb54442d18p-32, -0x1.921fb54442d18p-33
, -0x1.921fb54442d18p-34, -0x1.921fb54442d18p-35, -0x1.921fb54442d18p-36, -0x1.921fb54442d18p-37
, -0x1.921fb54442d18p-38, -0x1.921fb54442d18p-39, -0x1.921fb54442d18p-40, -0x1.921fb54442d18p-41
, -0x1.921fb54442d18p-42, -0x1.921fb54442d18p-43, -0x1.921fb54442d18p-44, -0x1.921fb54442d18p-45
, -0x1.921fb54442d18p-46, -0x1.921fb54442d18p-47, -0x1.921fb54442d18p-48, -0x1.921fb54442d18p-49
, -0x1.921fb54442d18p-50, -0x1.921fb54442d18p-51, -0x1.921fb54442d18p-52, -0x1.921fb54442d18p-53
, -0x1.921fb54442d18p-54, -0x1.921fb54442d18p-55, -0x1.921fb54442d18p-56, -0x1.921fb54442d18p-57
, -0x1.921fb54442d18p-58, -0x1.921fb54442d18p-59, -0x1.921fb54442d18p-60 };
The type of DFT to be performed. /** The type of DFT to be performed. */
private final DftNormalization normalization;
Creates a new instance of this class, with various normalization
conventions.
Params: - normalization – the type of normalization to be applied to the
transformed data
/**
* Creates a new instance of this class, with various normalization
* conventions.
*
* @param normalization the type of normalization to be applied to the
* transformed data
*/
public FastFourierTransformer(final DftNormalization normalization) {
this.normalization = normalization;
}
Performs identical index bit reversal shuffles on two arrays of identical
size. Each element in the array is swapped with another element based on
the bit-reversal of the index. For example, in an array with length 16,
item at binary index 0011 (decimal 3) would be swapped with the item at
binary index 1100 (decimal 12).
Params: - a – the first array to be shuffled
- b – the second array to be shuffled
/**
* Performs identical index bit reversal shuffles on two arrays of identical
* size. Each element in the array is swapped with another element based on
* the bit-reversal of the index. For example, in an array with length 16,
* item at binary index 0011 (decimal 3) would be swapped with the item at
* binary index 1100 (decimal 12).
*
* @param a the first array to be shuffled
* @param b the second array to be shuffled
*/
private static void bitReversalShuffle2(double[] a, double[] b) {
final int n = a.length;
assert b.length == n;
final int halfOfN = n >> 1;
int j = 0;
for (int i = 0; i < n; i++) {
if (i < j) {
// swap indices i & j
double temp = a[i];
a[i] = a[j];
a[j] = temp;
temp = b[i];
b[i] = b[j];
b[j] = temp;
}
int k = halfOfN;
while (k <= j && k > 0) {
j -= k;
k >>= 1;
}
j += k;
}
}
Applies the proper normalization to the specified transformed data.
Params: - dataRI – the unscaled transformed data
- normalization – the normalization to be applied
- type – the type of transform (forward, inverse) which resulted in the specified data
/**
* Applies the proper normalization to the specified transformed data.
*
* @param dataRI the unscaled transformed data
* @param normalization the normalization to be applied
* @param type the type of transform (forward, inverse) which resulted in the specified data
*/
private static void normalizeTransformedData(final double[][] dataRI,
final DftNormalization normalization, final TransformType type) {
final double[] dataR = dataRI[0];
final double[] dataI = dataRI[1];
final int n = dataR.length;
assert dataI.length == n;
switch (normalization) {
case STANDARD:
if (type == TransformType.INVERSE) {
final double scaleFactor = 1.0 / ((double) n);
for (int i = 0; i < n; i++) {
dataR[i] *= scaleFactor;
dataI[i] *= scaleFactor;
}
}
break;
case UNITARY:
final double scaleFactor = 1.0 / FastMath.sqrt(n);
for (int i = 0; i < n; i++) {
dataR[i] *= scaleFactor;
dataI[i] *= scaleFactor;
}
break;
default:
/*
* This should never occur in normal conditions. However this
* clause has been added as a safeguard if other types of
* normalizations are ever implemented, and the corresponding
* test is forgotten in the present switch.
*/
throw new MathIllegalStateException();
}
}
Computes the standard transform of the specified complex data. The
computation is done in place. The input data is laid out as follows
dataRI[0][i]
is the real part of the i
-th data point,
dataRI[1][i]
is the imaginary part of the i
-th data point.
Params: - dataRI – the two dimensional array of real and imaginary parts of the data
- normalization – the normalization to be applied to the transformed data
- type – the type of transform (forward, inverse) to be performed
Throws: - DimensionMismatchException – if the number of rows of the specified
array is not two, or the array is not rectangular
- MathIllegalArgumentException – if the number of data points is not
a power of two
/**
* Computes the standard transform of the specified complex data. The
* computation is done in place. The input data is laid out as follows
* <ul>
* <li>{@code dataRI[0][i]} is the real part of the {@code i}-th data point,</li>
* <li>{@code dataRI[1][i]} is the imaginary part of the {@code i}-th data point.</li>
* </ul>
*
* @param dataRI the two dimensional array of real and imaginary parts of the data
* @param normalization the normalization to be applied to the transformed data
* @param type the type of transform (forward, inverse) to be performed
* @throws DimensionMismatchException if the number of rows of the specified
* array is not two, or the array is not rectangular
* @throws MathIllegalArgumentException if the number of data points is not
* a power of two
*/
public static void transformInPlace(final double[][] dataRI,
final DftNormalization normalization, final TransformType type) {
if (dataRI.length != 2) {
throw new DimensionMismatchException(dataRI.length, 2);
}
final double[] dataR = dataRI[0];
final double[] dataI = dataRI[1];
if (dataR.length != dataI.length) {
throw new DimensionMismatchException(dataI.length, dataR.length);
}
final int n = dataR.length;
if (!ArithmeticUtils.isPowerOfTwo(n)) {
throw new MathIllegalArgumentException(
LocalizedFormats.NOT_POWER_OF_TWO_CONSIDER_PADDING,
Integer.valueOf(n));
}
if (n == 1) {
return;
} else if (n == 2) {
final double srcR0 = dataR[0];
final double srcI0 = dataI[0];
final double srcR1 = dataR[1];
final double srcI1 = dataI[1];
// X_0 = x_0 + x_1
dataR[0] = srcR0 + srcR1;
dataI[0] = srcI0 + srcI1;
// X_1 = x_0 - x_1
dataR[1] = srcR0 - srcR1;
dataI[1] = srcI0 - srcI1;
normalizeTransformedData(dataRI, normalization, type);
return;
}
bitReversalShuffle2(dataR, dataI);
// Do 4-term DFT.
if (type == TransformType.INVERSE) {
for (int i0 = 0; i0 < n; i0 += 4) {
final int i1 = i0 + 1;
final int i2 = i0 + 2;
final int i3 = i0 + 3;
final double srcR0 = dataR[i0];
final double srcI0 = dataI[i0];
final double srcR1 = dataR[i2];
final double srcI1 = dataI[i2];
final double srcR2 = dataR[i1];
final double srcI2 = dataI[i1];
final double srcR3 = dataR[i3];
final double srcI3 = dataI[i3];
// 4-term DFT
// X_0 = x_0 + x_1 + x_2 + x_3
dataR[i0] = srcR0 + srcR1 + srcR2 + srcR3;
dataI[i0] = srcI0 + srcI1 + srcI2 + srcI3;
// X_1 = x_0 - x_2 + j * (x_3 - x_1)
dataR[i1] = srcR0 - srcR2 + (srcI3 - srcI1);
dataI[i1] = srcI0 - srcI2 + (srcR1 - srcR3);
// X_2 = x_0 - x_1 + x_2 - x_3
dataR[i2] = srcR0 - srcR1 + srcR2 - srcR3;
dataI[i2] = srcI0 - srcI1 + srcI2 - srcI3;
// X_3 = x_0 - x_2 + j * (x_1 - x_3)
dataR[i3] = srcR0 - srcR2 + (srcI1 - srcI3);
dataI[i3] = srcI0 - srcI2 + (srcR3 - srcR1);
}
} else {
for (int i0 = 0; i0 < n; i0 += 4) {
final int i1 = i0 + 1;
final int i2 = i0 + 2;
final int i3 = i0 + 3;
final double srcR0 = dataR[i0];
final double srcI0 = dataI[i0];
final double srcR1 = dataR[i2];
final double srcI1 = dataI[i2];
final double srcR2 = dataR[i1];
final double srcI2 = dataI[i1];
final double srcR3 = dataR[i3];
final double srcI3 = dataI[i3];
// 4-term DFT
// X_0 = x_0 + x_1 + x_2 + x_3
dataR[i0] = srcR0 + srcR1 + srcR2 + srcR3;
dataI[i0] = srcI0 + srcI1 + srcI2 + srcI3;
// X_1 = x_0 - x_2 + j * (x_3 - x_1)
dataR[i1] = srcR0 - srcR2 + (srcI1 - srcI3);
dataI[i1] = srcI0 - srcI2 + (srcR3 - srcR1);
// X_2 = x_0 - x_1 + x_2 - x_3
dataR[i2] = srcR0 - srcR1 + srcR2 - srcR3;
dataI[i2] = srcI0 - srcI1 + srcI2 - srcI3;
// X_3 = x_0 - x_2 + j * (x_1 - x_3)
dataR[i3] = srcR0 - srcR2 + (srcI3 - srcI1);
dataI[i3] = srcI0 - srcI2 + (srcR1 - srcR3);
}
}
int lastN0 = 4;
int lastLogN0 = 2;
while (lastN0 < n) {
int n0 = lastN0 << 1;
int logN0 = lastLogN0 + 1;
double wSubN0R = W_SUB_N_R[logN0];
double wSubN0I = W_SUB_N_I[logN0];
if (type == TransformType.INVERSE) {
wSubN0I = -wSubN0I;
}
// Combine even/odd transforms of size lastN0 into a transform of size N0 (lastN0 * 2).
for (int destEvenStartIndex = 0; destEvenStartIndex < n; destEvenStartIndex += n0) {
int destOddStartIndex = destEvenStartIndex + lastN0;
double wSubN0ToRR = 1;
double wSubN0ToRI = 0;
for (int r = 0; r < lastN0; r++) {
double grR = dataR[destEvenStartIndex + r];
double grI = dataI[destEvenStartIndex + r];
double hrR = dataR[destOddStartIndex + r];
double hrI = dataI[destOddStartIndex + r];
// dest[destEvenStartIndex + r] = Gr + WsubN0ToR * Hr
dataR[destEvenStartIndex + r] = grR + wSubN0ToRR * hrR - wSubN0ToRI * hrI;
dataI[destEvenStartIndex + r] = grI + wSubN0ToRR * hrI + wSubN0ToRI * hrR;
// dest[destOddStartIndex + r] = Gr - WsubN0ToR * Hr
dataR[destOddStartIndex + r] = grR - (wSubN0ToRR * hrR - wSubN0ToRI * hrI);
dataI[destOddStartIndex + r] = grI - (wSubN0ToRR * hrI + wSubN0ToRI * hrR);
// WsubN0ToR *= WsubN0R
double nextWsubN0ToRR = wSubN0ToRR * wSubN0R - wSubN0ToRI * wSubN0I;
double nextWsubN0ToRI = wSubN0ToRR * wSubN0I + wSubN0ToRI * wSubN0R;
wSubN0ToRR = nextWsubN0ToRR;
wSubN0ToRI = nextWsubN0ToRI;
}
}
lastN0 = n0;
lastLogN0 = logN0;
}
normalizeTransformedData(dataRI, normalization, type);
}
Returns the (forward, inverse) transform of the specified real data set.
Params: - f – the real data array to be transformed
- type – the type of transform (forward, inverse) to be performed
Throws: - MathIllegalArgumentException – if the length of the data array is not a power of two
Returns: the complex transformed array
/**
* Returns the (forward, inverse) transform of the specified real data set.
*
* @param f the real data array to be transformed
* @param type the type of transform (forward, inverse) to be performed
* @return the complex transformed array
* @throws MathIllegalArgumentException if the length of the data array is not a power of two
*/
public Complex[] transform(final double[] f, final TransformType type) {
final double[][] dataRI = new double[][] {
MathArrays.copyOf(f, f.length), new double[f.length]
};
transformInPlace(dataRI, normalization, type);
return TransformUtils.createComplexArray(dataRI);
}
Returns the (forward, inverse) transform of the specified real function,
sampled on the specified interval.
Params: - f – the function to be sampled and transformed
- min – the (inclusive) lower bound for the interval
- max – the (exclusive) upper bound for the interval
- n – the number of sample points
- type – the type of transform (forward, inverse) to be performed
Throws: - NumberIsTooLargeException –
if the lower bound is greater than, or equal to the upper bound
- NotStrictlyPositiveException – if the number of sample points
n
is negative - MathIllegalArgumentException – if the number of sample points
n
is not a power of two
Returns: the complex transformed array
/**
* Returns the (forward, inverse) transform of the specified real function,
* sampled on the specified interval.
*
* @param f the function to be sampled and transformed
* @param min the (inclusive) lower bound for the interval
* @param max the (exclusive) upper bound for the interval
* @param n the number of sample points
* @param type the type of transform (forward, inverse) to be performed
* @return the complex transformed array
* @throws org.apache.commons.math3.exception.NumberIsTooLargeException
* if the lower bound is greater than, or equal to the upper bound
* @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
* if the number of sample points {@code n} is negative
* @throws MathIllegalArgumentException if the number of sample points
* {@code n} is not a power of two
*/
public Complex[] transform(final UnivariateFunction f,
final double min, final double max, final int n,
final TransformType type) {
final double[] data = FunctionUtils.sample(f, min, max, n);
return transform(data, type);
}
Returns the (forward, inverse) transform of the specified complex data set.
Params: - f – the complex data array to be transformed
- type – the type of transform (forward, inverse) to be performed
Throws: - MathIllegalArgumentException – if the length of the data array is not a power of two
Returns: the complex transformed array
/**
* Returns the (forward, inverse) transform of the specified complex data set.
*
* @param f the complex data array to be transformed
* @param type the type of transform (forward, inverse) to be performed
* @return the complex transformed array
* @throws MathIllegalArgumentException if the length of the data array is not a power of two
*/
public Complex[] transform(final Complex[] f, final TransformType type) {
final double[][] dataRI = TransformUtils.createRealImaginaryArray(f);
transformInPlace(dataRI, normalization, type);
return TransformUtils.createComplexArray(dataRI);
}
Performs a multi-dimensional Fourier transform on a given array. Use transform(Complex[], TransformType)
in a row-column implementation in any number of dimensions with O(N×log(N)) complexity with N = n1 × n2 ×n3 × ...
× nd, where nk is the number of elements in
dimension k, and d is the total number of dimensions.
Params: - mdca – Multi-Dimensional Complex Array, i.e.
Complex[][][][]
- type – the type of transform (forward, inverse) to be performed
Throws: - IllegalArgumentException – if any dimension is not a power of two
Returns: transform of mdca
as a Multi-Dimensional Complex Array, i.e. Complex[][][][]
Deprecated: see MATH-736
/**
* Performs a multi-dimensional Fourier transform on a given array. Use
* {@link #transform(Complex[], TransformType)} in a row-column
* implementation in any number of dimensions with
* O(N×log(N)) complexity with
* N = n<sub>1</sub> × n<sub>2</sub> ×n<sub>3</sub> × ...
* × n<sub>d</sub>, where n<sub>k</sub> is the number of elements in
* dimension k, and d is the total number of dimensions.
*
* @param mdca Multi-Dimensional Complex Array, i.e. {@code Complex[][][][]}
* @param type the type of transform (forward, inverse) to be performed
* @return transform of {@code mdca} as a Multi-Dimensional Complex Array, i.e. {@code Complex[][][][]}
* @throws IllegalArgumentException if any dimension is not a power of two
* @deprecated see MATH-736
*/
@Deprecated
public Object mdfft(Object mdca, TransformType type) {
MultiDimensionalComplexMatrix mdcm = (MultiDimensionalComplexMatrix)
new MultiDimensionalComplexMatrix(mdca).clone();
int[] dimensionSize = mdcm.getDimensionSizes();
//cycle through each dimension
for (int i = 0; i < dimensionSize.length; i++) {
mdfft(mdcm, type, i, new int[0]);
}
return mdcm.getArray();
}
Performs one dimension of a multi-dimensional Fourier transform.
Params: - mdcm – input matrix
- type – the type of transform (forward, inverse) to be performed
- d – index of the dimension to process
- subVector – recursion subvector
Throws: - IllegalArgumentException – if any dimension is not a power of two
Deprecated: see MATH-736
/**
* Performs one dimension of a multi-dimensional Fourier transform.
*
* @param mdcm input matrix
* @param type the type of transform (forward, inverse) to be performed
* @param d index of the dimension to process
* @param subVector recursion subvector
* @throws IllegalArgumentException if any dimension is not a power of two
* @deprecated see MATH-736
*/
@Deprecated
private void mdfft(MultiDimensionalComplexMatrix mdcm,
TransformType type, int d, int[] subVector) {
int[] dimensionSize = mdcm.getDimensionSizes();
//if done
if (subVector.length == dimensionSize.length) {
Complex[] temp = new Complex[dimensionSize[d]];
for (int i = 0; i < dimensionSize[d]; i++) {
//fft along dimension d
subVector[d] = i;
temp[i] = mdcm.get(subVector);
}
temp = transform(temp, type);
for (int i = 0; i < dimensionSize[d]; i++) {
subVector[d] = i;
mdcm.set(temp[i], subVector);
}
} else {
int[] vector = new int[subVector.length + 1];
System.arraycopy(subVector, 0, vector, 0, subVector.length);
if (subVector.length == d) {
//value is not important once the recursion is done.
//then an fft will be applied along the dimension d.
vector[d] = 0;
mdfft(mdcm, type, d, vector);
} else {
for (int i = 0; i < dimensionSize[subVector.length]; i++) {
vector[subVector.length] = i;
//further split along the next dimension
mdfft(mdcm, type, d, vector);
}
}
}
}
Complex matrix implementation. Not designed for synchronized access may
eventually be replaced by jsr-83 of the java community process
http://jcp.org/en/jsr/detail?id=83
may require additional exception throws for other basic requirements.
Deprecated: see MATH-736
/**
* Complex matrix implementation. Not designed for synchronized access may
* eventually be replaced by jsr-83 of the java community process
* http://jcp.org/en/jsr/detail?id=83
* may require additional exception throws for other basic requirements.
*
* @deprecated see MATH-736
*/
@Deprecated
private static class MultiDimensionalComplexMatrix
implements Cloneable {
Size in all dimensions. /** Size in all dimensions. */
protected int[] dimensionSize;
Storage array. /** Storage array. */
protected Object multiDimensionalComplexArray;
Simple constructor.
Params: - multiDimensionalComplexArray – array containing the matrix
elements
/**
* Simple constructor.
*
* @param multiDimensionalComplexArray array containing the matrix
* elements
*/
MultiDimensionalComplexMatrix(Object multiDimensionalComplexArray) {
this.multiDimensionalComplexArray = multiDimensionalComplexArray;
// count dimensions
int numOfDimensions = 0;
for (Object lastDimension = multiDimensionalComplexArray;
lastDimension instanceof Object[];) {
final Object[] array = (Object[]) lastDimension;
numOfDimensions++;
lastDimension = array[0];
}
// allocate array with exact count
dimensionSize = new int[numOfDimensions];
// fill array
numOfDimensions = 0;
for (Object lastDimension = multiDimensionalComplexArray;
lastDimension instanceof Object[];) {
final Object[] array = (Object[]) lastDimension;
dimensionSize[numOfDimensions++] = array.length;
lastDimension = array[0];
}
}
Get a matrix element.
Params: - vector – indices of the element
Throws: - DimensionMismatchException – if dimensions do not match
Returns: matrix element
/**
* Get a matrix element.
*
* @param vector indices of the element
* @return matrix element
* @exception DimensionMismatchException if dimensions do not match
*/
public Complex get(int... vector)
throws DimensionMismatchException {
if (vector == null) {
if (dimensionSize.length > 0) {
throw new DimensionMismatchException(
0,
dimensionSize.length);
}
return null;
}
if (vector.length != dimensionSize.length) {
throw new DimensionMismatchException(
vector.length,
dimensionSize.length);
}
Object lastDimension = multiDimensionalComplexArray;
for (int i = 0; i < dimensionSize.length; i++) {
lastDimension = ((Object[]) lastDimension)[vector[i]];
}
return (Complex) lastDimension;
}
Set a matrix element.
Params: - magnitude – magnitude of the element
- vector – indices of the element
Throws: - DimensionMismatchException – if dimensions do not match
Returns: the previous value
/**
* Set a matrix element.
*
* @param magnitude magnitude of the element
* @param vector indices of the element
* @return the previous value
* @exception DimensionMismatchException if dimensions do not match
*/
public Complex set(Complex magnitude, int... vector)
throws DimensionMismatchException {
if (vector == null) {
if (dimensionSize.length > 0) {
throw new DimensionMismatchException(
0,
dimensionSize.length);
}
return null;
}
if (vector.length != dimensionSize.length) {
throw new DimensionMismatchException(
vector.length,
dimensionSize.length);
}
Object[] lastDimension = (Object[]) multiDimensionalComplexArray;
for (int i = 0; i < dimensionSize.length - 1; i++) {
lastDimension = (Object[]) lastDimension[vector[i]];
}
Complex lastValue = (Complex) lastDimension[vector[dimensionSize.length - 1]];
lastDimension[vector[dimensionSize.length - 1]] = magnitude;
return lastValue;
}
Get the size in all dimensions.
Returns: size in all dimensions
/**
* Get the size in all dimensions.
*
* @return size in all dimensions
*/
public int[] getDimensionSizes() {
return dimensionSize.clone();
}
Get the underlying storage array.
Returns: underlying storage array
/**
* Get the underlying storage array.
*
* @return underlying storage array
*/
public Object getArray() {
return multiDimensionalComplexArray;
}
{@inheritDoc} /** {@inheritDoc} */
@Override
public Object clone() {
MultiDimensionalComplexMatrix mdcm =
new MultiDimensionalComplexMatrix(Array.newInstance(
Complex.class, dimensionSize));
clone(mdcm);
return mdcm;
}
Copy contents of current array into mdcm.
Params: - mdcm – array where to copy data
/**
* Copy contents of current array into mdcm.
*
* @param mdcm array where to copy data
*/
private void clone(MultiDimensionalComplexMatrix mdcm) {
int[] vector = new int[dimensionSize.length];
int size = 1;
for (int i = 0; i < dimensionSize.length; i++) {
size *= dimensionSize[i];
}
int[][] vectorList = new int[size][dimensionSize.length];
for (int[] nextVector : vectorList) {
System.arraycopy(vector, 0, nextVector, 0,
dimensionSize.length);
for (int i = 0; i < dimensionSize.length; i++) {
vector[i]++;
if (vector[i] < dimensionSize[i]) {
break;
} else {
vector[i] = 0;
}
}
}
for (int[] nextVector : vectorList) {
mdcm.set(get(nextVector), nextVector);
}
}
}
}