/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.stat.regression;

The multiple linear regression can be represented in matrix-notation.
 y=X*b+u
where y is an n-vector regressand, X is a [n,k] matrix whose k columns are called regressors, b is k-vector of regression parameters and u is an n-vector of error terms or residuals. The notation is quite standard in literature, cf eg Davidson and MacKinnon, Econometrics Theory and Methods, 2004.
Since:2.0
/** * The multiple linear regression can be represented in matrix-notation. * <pre> * y=X*b+u * </pre> * where y is an <code>n-vector</code> <b>regressand</b>, X is a <code>[n,k]</code> matrix whose <code>k</code> columns are called * <b>regressors</b>, b is <code>k-vector</code> of <b>regression parameters</b> and <code>u</code> is an <code>n-vector</code> * of <b>error terms</b> or <b>residuals</b>. * * The notation is quite standard in literature, * cf eg <a href="http://www.econ.queensu.ca/ETM">Davidson and MacKinnon, Econometrics Theory and Methods, 2004</a>. * @since 2.0 */
public interface MultipleLinearRegression {
Estimates the regression parameters b.
Returns:The [k,1] array representing b
/** * Estimates the regression parameters b. * * @return The [k,1] array representing b */
double[] estimateRegressionParameters();
Estimates the variance of the regression parameters, ie Var(b).
Returns:The [k,k] array representing the variance of b
/** * Estimates the variance of the regression parameters, ie Var(b). * * @return The [k,k] array representing the variance of b */
double[][] estimateRegressionParametersVariance();
Estimates the residuals, ie u = y - X*b.
Returns:The [n,1] array representing the residuals
/** * Estimates the residuals, ie u = y - X*b. * * @return The [n,1] array representing the residuals */
double[] estimateResiduals();
Returns the variance of the regressand, ie Var(y).
Returns:The double representing the variance of y
/** * Returns the variance of the regressand, ie Var(y). * * @return The double representing the variance of y */
double estimateRegressandVariance();
Returns the standard errors of the regression parameters.
Returns:standard errors of estimated regression parameters
/** * Returns the standard errors of the regression parameters. * * @return standard errors of estimated regression parameters */
double[] estimateRegressionParametersStandardErrors(); }