/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.stat.regression;

import org.apache.commons.math3.linear.LUDecomposition;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.RealVector;

The GLS implementation of multiple linear regression. GLS assumes a general covariance matrix Omega of the error
u ~ N(0, Omega)
Estimated by GLS,
b=(X' Omega^-1 X)^-1X'Omega^-1 y
whose variance is
Var(b)=(X' Omega^-1 X)^-1
Since:2.0
/** * The GLS implementation of multiple linear regression. * * GLS assumes a general covariance matrix Omega of the error * <pre> * u ~ N(0, Omega) * </pre> * * Estimated by GLS, * <pre> * b=(X' Omega^-1 X)^-1X'Omega^-1 y * </pre> * whose variance is * <pre> * Var(b)=(X' Omega^-1 X)^-1 * </pre> * @since 2.0 */
public class GLSMultipleLinearRegression extends AbstractMultipleLinearRegression {
Covariance matrix.
/** Covariance matrix. */
private RealMatrix Omega;
Inverse of covariance matrix.
/** Inverse of covariance matrix. */
private RealMatrix OmegaInverse;
Replace sample data, overriding any previous sample.
Params:
  • y – y values of the sample
  • x – x values of the sample
  • covariance – array representing the covariance matrix
/** Replace sample data, overriding any previous sample. * @param y y values of the sample * @param x x values of the sample * @param covariance array representing the covariance matrix */
public void newSampleData(double[] y, double[][] x, double[][] covariance) { validateSampleData(x, y); newYSampleData(y); newXSampleData(x); validateCovarianceData(x, covariance); newCovarianceData(covariance); }
Add the covariance data.
Params:
  • omega – the [n,n] array representing the covariance
/** * Add the covariance data. * * @param omega the [n,n] array representing the covariance */
protected void newCovarianceData(double[][] omega){ this.Omega = new Array2DRowRealMatrix(omega); this.OmegaInverse = null; }
Get the inverse of the covariance.

The inverse of the covariance matrix is lazily evaluated and cached.

Returns:inverse of the covariance
/** * Get the inverse of the covariance. * <p>The inverse of the covariance matrix is lazily evaluated and cached.</p> * @return inverse of the covariance */
protected RealMatrix getOmegaInverse() { if (OmegaInverse == null) { OmegaInverse = new LUDecomposition(Omega).getSolver().getInverse(); } return OmegaInverse; }
Calculates beta by GLS.
 b=(X' Omega^-1 X)^-1X'Omega^-1 y
Returns:beta
/** * Calculates beta by GLS. * <pre> * b=(X' Omega^-1 X)^-1X'Omega^-1 y * </pre> * @return beta */
@Override protected RealVector calculateBeta() { RealMatrix OI = getOmegaInverse(); RealMatrix XT = getX().transpose(); RealMatrix XTOIX = XT.multiply(OI).multiply(getX()); RealMatrix inverse = new LUDecomposition(XTOIX).getSolver().getInverse(); return inverse.multiply(XT).multiply(OI).operate(getY()); }
Calculates the variance on the beta.
 Var(b)=(X' Omega^-1 X)^-1
Returns:The beta variance matrix
/** * Calculates the variance on the beta. * <pre> * Var(b)=(X' Omega^-1 X)^-1 * </pre> * @return The beta variance matrix */
@Override protected RealMatrix calculateBetaVariance() { RealMatrix OI = getOmegaInverse(); RealMatrix XTOIX = getX().transpose().multiply(OI).multiply(getX()); return new LUDecomposition(XTOIX).getSolver().getInverse(); }
Calculates the estimated variance of the error term using the formula
 Var(u) = Tr(u' Omega^-1 u)/(n-k)
where n and k are the row and column dimensions of the design matrix X.
Returns:error variance
Since:2.2
/** * Calculates the estimated variance of the error term using the formula * <pre> * Var(u) = Tr(u' Omega^-1 u)/(n-k) * </pre> * where n and k are the row and column dimensions of the design * matrix X. * * @return error variance * @since 2.2 */
@Override protected double calculateErrorVariance() { RealVector residuals = calculateResiduals(); double t = residuals.dotProduct(getOmegaInverse().operate(residuals)); return t / (getX().getRowDimension() - getX().getColumnDimension()); } }