/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.stat.descriptive.moment;

import java.io.Serializable;
import java.util.Arrays;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.RealMatrix;

Returns the covariance matrix of the available vectors.
Since:1.2
/** * Returns the covariance matrix of the available vectors. * @since 1.2 */
public class VectorialCovariance implements Serializable {
Serializable version identifier
/** Serializable version identifier */
private static final long serialVersionUID = 4118372414238930270L;
Sums for each component.
/** Sums for each component. */
private final double[] sums;
Sums of products for each component.
/** Sums of products for each component. */
private final double[] productsSums;
Indicator for bias correction.
/** Indicator for bias correction. */
private final boolean isBiasCorrected;
Number of vectors in the sample.
/** Number of vectors in the sample. */
private long n;
Constructs a VectorialCovariance.
Params:
  • dimension – vectors dimension
  • isBiasCorrected – if true, computed the unbiased sample covariance, otherwise computes the biased population covariance
/** Constructs a VectorialCovariance. * @param dimension vectors dimension * @param isBiasCorrected if true, computed the unbiased sample covariance, * otherwise computes the biased population covariance */
public VectorialCovariance(int dimension, boolean isBiasCorrected) { sums = new double[dimension]; productsSums = new double[dimension * (dimension + 1) / 2]; n = 0; this.isBiasCorrected = isBiasCorrected; }
Add a new vector to the sample.
Params:
  • v – vector to add
Throws:
/** * Add a new vector to the sample. * @param v vector to add * @throws DimensionMismatchException if the vector does not have the right dimension */
public void increment(double[] v) throws DimensionMismatchException { if (v.length != sums.length) { throw new DimensionMismatchException(v.length, sums.length); } int k = 0; for (int i = 0; i < v.length; ++i) { sums[i] += v[i]; for (int j = 0; j <= i; ++j) { productsSums[k++] += v[i] * v[j]; } } n++; }
Get the covariance matrix.
Returns:covariance matrix
/** * Get the covariance matrix. * @return covariance matrix */
public RealMatrix getResult() { int dimension = sums.length; RealMatrix result = MatrixUtils.createRealMatrix(dimension, dimension); if (n > 1) { double c = 1.0 / (n * (isBiasCorrected ? (n - 1) : n)); int k = 0; for (int i = 0; i < dimension; ++i) { for (int j = 0; j <= i; ++j) { double e = c * (n * productsSums[k++] - sums[i] * sums[j]); result.setEntry(i, j, e); result.setEntry(j, i, e); } } } return result; }
Get the number of vectors in the sample.
Returns:number of vectors in the sample
/** * Get the number of vectors in the sample. * @return number of vectors in the sample */
public long getN() { return n; }
Clears the internal state of the Statistic
/** * Clears the internal state of the Statistic */
public void clear() { n = 0; Arrays.fill(sums, 0.0); Arrays.fill(productsSums, 0.0); }
{@inheritDoc}
/** {@inheritDoc} */
@Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + (isBiasCorrected ? 1231 : 1237); result = prime * result + (int) (n ^ (n >>> 32)); result = prime * result + Arrays.hashCode(productsSums); result = prime * result + Arrays.hashCode(sums); return result; }
{@inheritDoc}
/** {@inheritDoc} */
@Override public boolean equals(Object obj) { if (this == obj) { return true; } if (!(obj instanceof VectorialCovariance)) { return false; } VectorialCovariance other = (VectorialCovariance) obj; if (isBiasCorrected != other.isBiasCorrected) { return false; } if (n != other.n) { return false; } if (!Arrays.equals(productsSums, other.productsSums)) { return false; } if (!Arrays.equals(sums, other.sums)) { return false; } return true; } }