/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.random;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;
This class provides a stable normalized random generator. It samples from a stable
distribution with location parameter 0 and scale 1.
The implementation uses the Chambers-Mallows-Stuck method as described in
Handbook of computational statistics: concepts and methods by
James E. Gentle, Wolfgang Härdle, Yuichi Mori.
Since: 3.0
/**
* <p>This class provides a stable normalized random generator. It samples from a stable
* distribution with location parameter 0 and scale 1.</p>
*
* <p>The implementation uses the Chambers-Mallows-Stuck method as described in
* <i>Handbook of computational statistics: concepts and methods</i> by
* James E. Gentle, Wolfgang Härdle, Yuichi Mori.</p>
*
* @since 3.0
*/
public class StableRandomGenerator implements NormalizedRandomGenerator {
Underlying generator. /** Underlying generator. */
private final RandomGenerator generator;
stability parameter /** stability parameter */
private final double alpha;
skewness parameter /** skewness parameter */
private final double beta;
cache of expression value used in generation /** cache of expression value used in generation */
private final double zeta;
Create a new generator.
Params: - generator – underlying random generator to use
- alpha – Stability parameter. Must be in range (0, 2]
- beta – Skewness parameter. Must be in range [-1, 1]
Throws: - NullArgumentException – if generator is null
- OutOfRangeException – if
alpha <= 0
or alpha > 2
or beta < -1
or beta > 1
/**
* Create a new generator.
*
* @param generator underlying random generator to use
* @param alpha Stability parameter. Must be in range (0, 2]
* @param beta Skewness parameter. Must be in range [-1, 1]
* @throws NullArgumentException if generator is null
* @throws OutOfRangeException if {@code alpha <= 0} or {@code alpha > 2}
* or {@code beta < -1} or {@code beta > 1}
*/
public StableRandomGenerator(final RandomGenerator generator,
final double alpha, final double beta)
throws NullArgumentException, OutOfRangeException {
if (generator == null) {
throw new NullArgumentException();
}
if (!(alpha > 0d && alpha <= 2d)) {
throw new OutOfRangeException(LocalizedFormats.OUT_OF_RANGE_LEFT,
alpha, 0, 2);
}
if (!(beta >= -1d && beta <= 1d)) {
throw new OutOfRangeException(LocalizedFormats.OUT_OF_RANGE_SIMPLE,
beta, -1, 1);
}
this.generator = generator;
this.alpha = alpha;
this.beta = beta;
if (alpha < 2d && beta != 0d) {
zeta = beta * FastMath.tan(FastMath.PI * alpha / 2);
} else {
zeta = 0d;
}
}
Generate a random scalar with zero location and unit scale.
Returns: a random scalar with zero location and unit scale
/**
* Generate a random scalar with zero location and unit scale.
*
* @return a random scalar with zero location and unit scale
*/
public double nextNormalizedDouble() {
// we need 2 uniform random numbers to calculate omega and phi
double omega = -FastMath.log(generator.nextDouble());
double phi = FastMath.PI * (generator.nextDouble() - 0.5);
// Normal distribution case (Box-Muller algorithm)
if (alpha == 2d) {
return FastMath.sqrt(2d * omega) * FastMath.sin(phi);
}
double x;
// when beta = 0, zeta is zero as well
// Thus we can exclude it from the formula
if (beta == 0d) {
// Cauchy distribution case
if (alpha == 1d) {
x = FastMath.tan(phi);
} else {
x = FastMath.pow(omega * FastMath.cos((1 - alpha) * phi),
1d / alpha - 1d) *
FastMath.sin(alpha * phi) /
FastMath.pow(FastMath.cos(phi), 1d / alpha);
}
} else {
// Generic stable distribution
double cosPhi = FastMath.cos(phi);
// to avoid rounding errors around alpha = 1
if (FastMath.abs(alpha - 1d) > 1e-8) {
double alphaPhi = alpha * phi;
double invAlphaPhi = phi - alphaPhi;
x = (FastMath.sin(alphaPhi) + zeta * FastMath.cos(alphaPhi)) / cosPhi *
(FastMath.cos(invAlphaPhi) + zeta * FastMath.sin(invAlphaPhi)) /
FastMath.pow(omega * cosPhi, (1 - alpha) / alpha);
} else {
double betaPhi = FastMath.PI / 2 + beta * phi;
x = 2d / FastMath.PI * (betaPhi * FastMath.tan(phi) - beta *
FastMath.log(FastMath.PI / 2d * omega * cosPhi / betaPhi));
if (alpha != 1d) {
x += beta * FastMath.tan(FastMath.PI * alpha / 2);
}
}
}
return x;
}
}