/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.random;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.nio.charset.Charset;
import java.util.Arrays;
import java.util.NoSuchElementException;
import java.util.StringTokenizer;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.exception.MathParseException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.util.FastMath;
Implementation of a Sobol sequence.
A Sobol sequence is a low-discrepancy sequence with the property that for all values of N,
its subsequence (x1, ... xN) has a low discrepancy. It can be used to generate pseudo-random
points in a space S, which are equi-distributed.
The implementation already comes with support for up to 1000 dimensions with direction numbers
calculated from Stephen Joe and Frances Kuo.
The generator supports two modes:
- sequential generation of points:
nextVector()
- random access to the i-th point in the sequence:
skipTo(int)
See Also: Since: 3.3
/**
* Implementation of a Sobol sequence.
* <p>
* A Sobol sequence is a low-discrepancy sequence with the property that for all values of N,
* its subsequence (x1, ... xN) has a low discrepancy. It can be used to generate pseudo-random
* points in a space S, which are equi-distributed.
* <p>
* The implementation already comes with support for up to 1000 dimensions with direction numbers
* calculated from <a href="http://web.maths.unsw.edu.au/~fkuo/sobol/">Stephen Joe and Frances Kuo</a>.
* <p>
* The generator supports two modes:
* <ul>
* <li>sequential generation of points: {@link #nextVector()}</li>
* <li>random access to the i-th point in the sequence: {@link #skipTo(int)}</li>
* </ul>
*
* @see <a href="http://en.wikipedia.org/wiki/Sobol_sequence">Sobol sequence (Wikipedia)</a>
* @see <a href="http://web.maths.unsw.edu.au/~fkuo/sobol/">Sobol sequence direction numbers</a>
*
* @since 3.3
*/
public class SobolSequenceGenerator implements RandomVectorGenerator {
The number of bits to use. /** The number of bits to use. */
private static final int BITS = 52;
The scaling factor. /** The scaling factor. */
private static final double SCALE = FastMath.pow(2, BITS);
The maximum supported space dimension. /** The maximum supported space dimension. */
private static final int MAX_DIMENSION = 1000;
The resource containing the direction numbers. /** The resource containing the direction numbers. */
private static final String RESOURCE_NAME = "/assets/org/apache/commons/math3/random/new-joe-kuo-6.1000";
Character set for file input. /** Character set for file input. */
private static final String FILE_CHARSET = "US-ASCII";
Space dimension. /** Space dimension. */
private final int dimension;
The current index in the sequence. /** The current index in the sequence. */
private int count = 0;
The direction vector for each component. /** The direction vector for each component. */
private final long[][] direction;
The current state. /** The current state. */
private final long[] x;
Construct a new Sobol sequence generator for the given space dimension.
Params: - dimension – the space dimension
Throws: - OutOfRangeException – if the space dimension is outside the allowed range of [1, 1000]
/**
* Construct a new Sobol sequence generator for the given space dimension.
*
* @param dimension the space dimension
* @throws OutOfRangeException if the space dimension is outside the allowed range of [1, 1000]
*/
public SobolSequenceGenerator(final int dimension) throws OutOfRangeException {
if (dimension < 1 || dimension > MAX_DIMENSION) {
throw new OutOfRangeException(dimension, 1, MAX_DIMENSION);
}
// initialize the other dimensions with direction numbers from a resource
final InputStream is = getClass().getResourceAsStream(RESOURCE_NAME);
if (is == null) {
throw new MathInternalError();
}
this.dimension = dimension;
// init data structures
direction = new long[dimension][BITS + 1];
x = new long[dimension];
try {
initFromStream(is);
} catch (IOException e) {
// the internal resource file could not be read -> should not happen
throw new MathInternalError();
} catch (MathParseException e) {
// the internal resource file could not be parsed -> should not happen
throw new MathInternalError();
} finally {
try {
is.close();
} catch (IOException e) { // NOPMD
// ignore
}
}
}
Construct a new Sobol sequence generator for the given space dimension with
direction vectors loaded from the given stream.
The expected format is identical to the files available from
Stephen Joe and Frances Kuo.
The first line will be ignored as it is assumed to contain only the column headers.
The columns are:
- d: the dimension
- s: the degree of the primitive polynomial
- a: the number representing the coefficients
- m: the list of initial direction numbers
Example:
d s a m_i
2 1 0 1
3 2 1 1 3
The input stream must be an ASCII text containing one valid direction vector per line.
Params: - dimension – the space dimension
- is – the stream to read the direction vectors from
Throws: - NotStrictlyPositiveException – if the space dimension is < 1
- OutOfRangeException – if the space dimension is outside the range [1, max], where
max refers to the maximum dimension found in the input stream
- MathParseException – if the content in the stream could not be parsed successfully
- IOException – if an error occurs while reading from the input stream
/**
* Construct a new Sobol sequence generator for the given space dimension with
* direction vectors loaded from the given stream.
* <p>
* The expected format is identical to the files available from
* <a href="http://web.maths.unsw.edu.au/~fkuo/sobol/">Stephen Joe and Frances Kuo</a>.
* The first line will be ignored as it is assumed to contain only the column headers.
* The columns are:
* <ul>
* <li>d: the dimension</li>
* <li>s: the degree of the primitive polynomial</li>
* <li>a: the number representing the coefficients</li>
* <li>m: the list of initial direction numbers</li>
* </ul>
* Example:
* <pre>
* d s a m_i
* 2 1 0 1
* 3 2 1 1 3
* </pre>
* <p>
* The input stream <i>must</i> be an ASCII text containing one valid direction vector per line.
*
* @param dimension the space dimension
* @param is the stream to read the direction vectors from
* @throws NotStrictlyPositiveException if the space dimension is < 1
* @throws OutOfRangeException if the space dimension is outside the range [1, max], where
* max refers to the maximum dimension found in the input stream
* @throws MathParseException if the content in the stream could not be parsed successfully
* @throws IOException if an error occurs while reading from the input stream
*/
public SobolSequenceGenerator(final int dimension, final InputStream is)
throws NotStrictlyPositiveException, MathParseException, IOException {
if (dimension < 1) {
throw new NotStrictlyPositiveException(dimension);
}
this.dimension = dimension;
// init data structures
direction = new long[dimension][BITS + 1];
x = new long[dimension];
// initialize the other dimensions with direction numbers from the stream
int lastDimension = initFromStream(is);
if (lastDimension < dimension) {
throw new OutOfRangeException(dimension, 1, lastDimension);
}
}
Load the direction vector for each dimension from the given stream.
The input stream must be an ASCII text containing one
valid direction vector per line.
Params: - is – the input stream to read the direction vector from
Throws: - IOException – if the stream could not be read
- MathParseException – if the content could not be parsed successfully
Returns: the last dimension that has been read from the input stream
/**
* Load the direction vector for each dimension from the given stream.
* <p>
* The input stream <i>must</i> be an ASCII text containing one
* valid direction vector per line.
*
* @param is the input stream to read the direction vector from
* @return the last dimension that has been read from the input stream
* @throws IOException if the stream could not be read
* @throws MathParseException if the content could not be parsed successfully
*/
private int initFromStream(final InputStream is) throws MathParseException, IOException {
// special case: dimension 1 -> use unit initialization
for (int i = 1; i <= BITS; i++) {
direction[0][i] = 1l << (BITS - i);
}
final Charset charset = Charset.forName(FILE_CHARSET);
final BufferedReader reader = new BufferedReader(new InputStreamReader(is, charset));
int dim = -1;
try {
// ignore first line
reader.readLine();
int lineNumber = 2;
int index = 1;
String line = null;
while ( (line = reader.readLine()) != null) {
StringTokenizer st = new StringTokenizer(line, " ");
try {
dim = Integer.parseInt(st.nextToken());
if (dim >= 2 && dim <= dimension) { // we have found the right dimension
final int s = Integer.parseInt(st.nextToken());
final int a = Integer.parseInt(st.nextToken());
final int[] m = new int[s + 1];
for (int i = 1; i <= s; i++) {
m[i] = Integer.parseInt(st.nextToken());
}
initDirectionVector(index++, a, m);
}
if (dim > dimension) {
return dim;
}
} catch (NoSuchElementException e) {
throw new MathParseException(line, lineNumber);
} catch (NumberFormatException e) {
throw new MathParseException(line, lineNumber);
}
lineNumber++;
}
} finally {
reader.close();
}
return dim;
}
Calculate the direction numbers from the given polynomial.
Params: - d – the dimension, zero-based
- a – the coefficients of the primitive polynomial
- m – the initial direction numbers
/**
* Calculate the direction numbers from the given polynomial.
*
* @param d the dimension, zero-based
* @param a the coefficients of the primitive polynomial
* @param m the initial direction numbers
*/
private void initDirectionVector(final int d, final int a, final int[] m) {
final int s = m.length - 1;
for (int i = 1; i <= s; i++) {
direction[d][i] = ((long) m[i]) << (BITS - i);
}
for (int i = s + 1; i <= BITS; i++) {
direction[d][i] = direction[d][i - s] ^ (direction[d][i - s] >> s);
for (int k = 1; k <= s - 1; k++) {
direction[d][i] ^= ((a >> (s - 1 - k)) & 1) * direction[d][i - k];
}
}
}
{@inheritDoc} /** {@inheritDoc} */
public double[] nextVector() {
final double[] v = new double[dimension];
if (count == 0) {
count++;
return v;
}
// find the index c of the rightmost 0
int c = 1;
int value = count - 1;
while ((value & 1) == 1) {
value >>= 1;
c++;
}
for (int i = 0; i < dimension; i++) {
x[i] ^= direction[i][c];
v[i] = (double) x[i] / SCALE;
}
count++;
return v;
}
Skip to the i-th point in the Sobol sequence.
This operation can be performed in O(1).
Params: - index – the index in the sequence to skip to
Throws: - NotPositiveException – if index < 0
Returns: the i-th point in the Sobol sequence
/**
* Skip to the i-th point in the Sobol sequence.
* <p>
* This operation can be performed in O(1).
*
* @param index the index in the sequence to skip to
* @return the i-th point in the Sobol sequence
* @throws NotPositiveException if index < 0
*/
public double[] skipTo(final int index) throws NotPositiveException {
if (index == 0) {
// reset x vector
Arrays.fill(x, 0);
} else {
final int i = index - 1;
final long grayCode = i ^ (i >> 1); // compute the gray code of i = i XOR floor(i / 2)
for (int j = 0; j < dimension; j++) {
long result = 0;
for (int k = 1; k <= BITS; k++) {
final long shift = grayCode >> (k - 1);
if (shift == 0) {
// stop, as all remaining bits will be zero
break;
}
// the k-th bit of i
final long ik = shift & 1;
result ^= ik * direction[j][k];
}
x[j] = result;
}
}
count = index;
return nextVector();
}
Returns the index i of the next point in the Sobol sequence that will be returned by calling nextVector()
. Returns: the index of the next point
/**
* Returns the index i of the next point in the Sobol sequence that will be returned
* by calling {@link #nextVector()}.
*
* @return the index of the next point
*/
public int getNextIndex() {
return count;
}
}