/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.optimization.general;

import org.apache.commons.math3.analysis.MultivariateVectorFunction;
import org.apache.commons.math3.analysis.differentiation.GradientFunction;
import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction;
import org.apache.commons.math3.optimization.ConvergenceChecker;
import org.apache.commons.math3.optimization.GoalType;
import org.apache.commons.math3.optimization.OptimizationData;
import org.apache.commons.math3.optimization.InitialGuess;
import org.apache.commons.math3.optimization.PointValuePair;
import org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer;

Base class for implementing optimizers for multivariate scalar differentiable functions. It contains boiler-plate code for dealing with gradient evaluation.
Deprecated:As of 3.1 (to be removed in 4.0).
Since:3.1
/** * Base class for implementing optimizers for multivariate scalar * differentiable functions. * It contains boiler-plate code for dealing with gradient evaluation. * * @deprecated As of 3.1 (to be removed in 4.0). * @since 3.1 */
@Deprecated public abstract class AbstractDifferentiableOptimizer extends BaseAbstractMultivariateOptimizer<MultivariateDifferentiableFunction> {
Objective function gradient.
/** * Objective function gradient. */
private MultivariateVectorFunction gradient;
Params:
  • checker – Convergence checker.
/** * @param checker Convergence checker. */
protected AbstractDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker) { super(checker); }
Compute the gradient vector.
Params:
  • evaluationPoint – Point at which the gradient must be evaluated.
Returns:the gradient at the specified point.
/** * Compute the gradient vector. * * @param evaluationPoint Point at which the gradient must be evaluated. * @return the gradient at the specified point. */
protected double[] computeObjectiveGradient(final double[] evaluationPoint) { return gradient.value(evaluationPoint); }
{@inheritDoc}
Deprecated:In 3.1. Please use optimizeInternal(int, MultivariateDifferentiableFunction, GoalType, OptimizationData[]) instead.
/** * {@inheritDoc} * * @deprecated In 3.1. Please use * {@link #optimizeInternal(int,MultivariateDifferentiableFunction,GoalType,OptimizationData[])} * instead. */
@Override@Deprecated protected PointValuePair optimizeInternal(final int maxEval, final MultivariateDifferentiableFunction f, final GoalType goalType, final double[] startPoint) { return optimizeInternal(maxEval, f, goalType, new InitialGuess(startPoint)); }
{@inheritDoc}
/** {@inheritDoc} */
@Override protected PointValuePair optimizeInternal(final int maxEval, final MultivariateDifferentiableFunction f, final GoalType goalType, final OptimizationData... optData) { // Store optimization problem characteristics. gradient = new GradientFunction(f); // Perform optimization. return super.optimizeInternal(maxEval, f, goalType, optData); } }